Publications can be found through the faculty’s Google Scholar links below:

We employed a polymer network to understand what properties of pyrogenic carbonaceous matter (PCM; e.g., activated carbon) confer its reactivity, which we hereinafter referred to as PCM-like polymers (PLP). This approach allows us to delineate the role of functional groups and micropore characteristics using 2,4,6-trinitrotoluene (TNT) as a model contaminant. Six PLP were synthesized via cross-coupling chemistry with specific functionality (-OH, -NH2, -N(CH3)2, or -N(CH3)3+) and pore characteristics (mesopore, micropore). Results suggest that PCM functionality catalyzed the reaction by: (1) serving as a weak base (-OH, -NH2) to attack TNT, or (2) accumulating OH- near PCM surfaces (-N(CH3)3+). Additionally, TNT hydrolysis rates, pH and co-ion effects, and products were monitored. Microporous PLP accelerated TNT decay compared to its mesoporous counterpart, as further supported by molecular dynamics modeling results. We also demonstrated that quaternary ammonium-modified activated carbon enhanced TNT hydrolysis. These findings have broad implications for pollutant abatement and catalyst design.

Drinking water disinfection by chlorination or chloramination can result in the formation of disinfection byproducts (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs). Pyrogenic carbonaceous matter (PCM), such as activated carbon (AC), is commonly used as an ostensibly inert adsorbent to remove HAAs from water. HAA degradation has been mainly attributed to biological factors. This study, for the first time, revealed that abiotic HAA degradation in the presence of PCM could be important under water treatment conditions. Specifically, we observed complete destruction of Br3AA, a model HAA, in the presence of powder AC at pH 7 within 30 min. To understand the role of PCM and the reaction mechanism, we performed a systematic study using a suite of HAAs and various PCM types. We found that PCM significantly accelerated the transformation of three HAAs (Br3AA, BrCl2AA, Br2ClAA) at pH 7. Product characterization indicated an approximately 1:1 HAA molar transformation into their respective THMs following a decarboxylation pathway with PCM. The Br3AA activation energy (Ea) was measured by kinetic experiments at 15–45 °C with and without a model PCM, wherein a significant decrease in Ea from 25.7 ± 3.2 to 13.6 ± 2.2 kcal•mol−1 was observed. We further demonstrated that oxygenated functional groups on PCM (e.g., -COOH) can accelerate HAA decarboxylation using synthesized polymers to resemble PCM. Density functional theory simulations were performed to determine the enthalpy of activation (ΔH) for Br3AA decarboxylation with H3O+ and formic acid (HCOOH). The presence of HCOOH significantly lowered the overall ΔH value for Br3AA decarboxylation, supporting the hypothesis that -COOH catalyzes the C-C bond breaking in Br3AA. Overall, our study demonstrated the importance of a previously overlooked abiotic reaction pathway, where HAAs can be quickly converted to THMs with PCM under water treatment relevant conditions. These findings have substantial implications for DBP mitigation in water quality control, particularly for potable water reuse or pre-chlorinated water that allow direct contact between HAAs and AC during filtration as well as PAC fines traveling with finished water in water distribution systems. As such, the volatilization and relative low toxicity of volatile THMs may be considered as a detoxification process to mitigate adverse DBP effects in drinking water, thereby lowering potential health risks to consumers.

Chars are ubiquitous in the environment and release significant amounts of redox-active pyrogenic dissolved organic matter (pyDOM). Yet, the redox properties of pyDOM remain poorly characterized. This work provides a systematic assessment of the quantity and redox properties of pyDOM released at circumneutral pH from a total of 14 chars pyrolyzed from wood and grass feedstocks from 200 to 700 °C. The amount of released pyDOM decreased with increasing pyrolysis temperature of chars, reflecting the increasing degree of condensation and decreasing char polarity. Using flow-injection analysis coupled to electrochemical detection, we demonstrated that electron-donating capacities (EDCpyDOM; up to 6.5 mmole–·gC–1) were higher than electron-accepting capacities (EACpyDOM; up to 1.2 mmole–·gC–1) for all pyDOM specimens. The optical properties and low metal contents of the pyDOM implicate phenols and quinones as the major redox-active moieties. Oxidation of a selected pyDOM by the oxidative enzyme laccase resulted in a 1.57 mmole–·gC–1 decrease in EDCpyDOM and a 0.25 mmole–·gC–1 increase in EACpyDOM, demonstrating a largely irreversible oxidation of presumably phenolic moieties. Non-mediated electrochemical reduction of the same pyDOM resulted in a 0.17 mmole–·gC–1 increase in EDCpyDOM and a 0.24 mmole–·gC–1 decrease in EACpyDOM, consistent with the largely reversible reduction of quinone moieties. Our results imply that pyDOM is an important dissolved redox-active phase in the environment and requires consideration in assessing and modeling biogeochemical redox processes and pollutant redox transformations, particularly in char-rich environments.

Dr. Wenqing Xu
Associate Professor, Civil and Environmental Engineering