Spectral Properties of Simplicial Rook Graphs

Sebastian Cioabă Willem Haemers Jason Vermette

University of Delaware, USA
Tilburg University, Netherlands

Modern Trends in Algebraic Graph Theory
June 2, 2014
Definition (Simplicial Rook Graph)

The *simplicial rook graph* $SR(d, n)$ is the graph whose vertices are lattice points in the nth dilate of the standard simplex in \mathbb{R}^d, with two vertices adjacent if and only if they differ by a multiple of $e_i - e_j$ for some pair i, j.
Definition (Simplicial Rook Graph)

The *simplicial rook graph* $SR(d, n)$ is the graph whose vertices are lattice points in the nth dilate of the standard simplex in \mathbb{R}^d, with two vertices adjacent if and only if they differ by a multiple of $e_i - e_j$ for some pair i, j.
Definition (Simplicial Rook Graph)

The *simplicial rook graph* $SR(d, n)$ is the graph whose vertices are lattice points in the nth dilate of the standard simplex in \mathbb{R}^d, with two vertices adjacent if and only if they differ by a multiple of $e_i - e_j$ for some pair i, j.

![Diagram of simplicial rook graph]
Definition (Simplicial Rook Graph)

The *simplicial rook graph* $SR(d, n)$ is the graph whose vertices are lattice points in the nth dilate of the standard simplex in \mathbb{R}^d, with two vertices adjacent if and only if they differ by a multiple of $e_i - e_j$ for some pair i, j.
Definition (Simplicial Rook Graph)

The simplicial rook graph $SR(d, n)$ is the graph whose vertices are the set $V(d, n) = \{(x_1, x_2, \ldots, x_d) \mid 0 \leq x_i \leq n, \sum_{i=1}^{d} x_i = n\}$, with two vertices adjacent if and only if they differ in exactly two coordinates.
Definition (Simplicial Rook Graph)

The simplicial rook graph $SR(d, n)$ is the graph whose vertices are the set $V(d, n) = \{(x_1, x_2, \ldots, x_d) \mid 0 \leq x_i \leq n, \sum_{i=1}^{d} x_i = n\}$, with two vertices adjacent if and only if they differ in exactly two coordinates.
Definition (Simplicial Rook Graph)

The *simplicial rook graph* \(SR(d, n) \) is the graph whose vertices are the set \(V(d, n) = \{(x_1, x_2, \ldots, x_d) \mid 0 \leq x_i \leq n, \sum_{i=1}^{d} x_i = n\} \), with two vertices adjacent if and only if they differ in exactly two coordinates.
SR(2, n) \cong K_{n+1}, \text{ since } V(2, n) = \{(x, y) \mid x, y \geq 0, x + y = n\}.
SR\((d, n)\) for small \(d\) or \(n\)

- \(SR(2, n) \cong K_{n+1}\), since
 \[V(2, n) = \{(x, y) \mid x, y \geq 0, x + y = n\} \].

- \(SR(d, 1) \cong K_d\), since \(V(d, 1) = \{e_1, \ldots, e_d\}\).
$SR(d, n)$ for small d or n

- $SR(d, 2) \cong J(d + 1, 2) \cong T(d + 1)$. Why?
SR\((d, n)\) for small \(d\) or \(n\)

- \(SR(d, 2) \cong J(d + 1, 2) \cong T(d + 1)\). Why?
Martin and Wagner’s Results

- $SR(d, n)$ has $\binom{n+d-1}{d-1}$ vertices.
- $SR(d, n)$ is regular of degree $n(d - 1)$.
Martin and Wagner’s Results

- $SR(d, n)$ has $\binom{n + d - 1}{d - 1}$ vertices.
- $SR(d, n)$ is regular of degree $n(d - 1)$.
- When $n \geq \binom{d}{2}$, the smallest eigenvalue is $-\binom{d}{2}$ with multiplicity at least $\binom{n - \binom{d - 1}{2}}{d - 1}$.

When $n < \binom{d}{2}$, the smallest eigenvalue in all known cases is $-\binom{d}{2}$ with multiplicity the Mahonian number $M(d, n)$.
Martin and Wagner’s Results

- $SR(d, n)$ has $\binom{n+d-1}{d-1}$ vertices.
- $SR(d, n)$ is regular of degree $n(d-1)$.
- When $n \geq \binom{d}{2}$, the smallest eigenvalue is $-\binom{d}{2}$ with multiplicity at least $\binom{n-\binom{d-1}{2}}{d-1}$.
- When $n < \binom{d}{2}$, the smallest eigenvalue in all known cases is $-n$ with multicity the Mahonian number $M(d, n)$.
The spectrum of $SR(3, n)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$\binom{2m}{2}$</td>
<td>-3</td>
<td>$\binom{2m-1}{2}$</td>
</tr>
<tr>
<td>$-2, -1, \ldots, m - 3$</td>
<td>3</td>
<td>$-2, -1, \ldots, m - 4$</td>
<td>3</td>
</tr>
<tr>
<td>$m - 1$</td>
<td>2</td>
<td>$m - 3$</td>
<td>2</td>
</tr>
<tr>
<td>$m, \ldots, 2m - 1$</td>
<td>3</td>
<td>$m - 1, \ldots, 2m - 2$</td>
<td>3</td>
</tr>
<tr>
<td>$2n$</td>
<td>1</td>
<td>$2n$</td>
<td>1</td>
</tr>
</tbody>
</table>

If $n = 2m + 1$: If $n = 2m$: When $d = 4$, the spectrum is integral for $n \leq 30$. When $d = 5$, the spectrum is integral for $n \leq 25$.
The spectrum of $SR(3, n)$ is:

If $n = 2m + 1$:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$\binom{2m}{2}$</td>
</tr>
<tr>
<td>-2,-1,...,m-3</td>
<td>3</td>
</tr>
<tr>
<td>m-1</td>
<td>2</td>
</tr>
<tr>
<td>m,...,2m-1</td>
<td>3</td>
</tr>
<tr>
<td>2n</td>
<td>1</td>
</tr>
</tbody>
</table>

If $n = 2m$:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$\binom{2m-1}{2}$</td>
</tr>
<tr>
<td>-2,-1,...,m-4</td>
<td>3</td>
</tr>
<tr>
<td>m-3</td>
<td>2</td>
</tr>
<tr>
<td>m-1,...,2m-2</td>
<td>3</td>
</tr>
<tr>
<td>2n</td>
<td>1</td>
</tr>
</tbody>
</table>

- When $d = 4$, the spectrum is integral for $n \leq 30$.
- When $d = 5$, the spectrum is integral for $n \leq 25$.
The spectrum of $SR(3, n)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$\binom{2m}{2}$</td>
</tr>
<tr>
<td>-2, -1, \ldots, m - 3</td>
<td>3</td>
</tr>
<tr>
<td>m - 1</td>
<td>2</td>
</tr>
<tr>
<td>m, \ldots, 2m - 1</td>
<td>3</td>
</tr>
<tr>
<td>2n</td>
<td>1</td>
</tr>
</tbody>
</table>

If $n = 2m + 1$:

-3 $\binom{2m}{2}$
-2, -1, \ldots, m - 3 3
m - 1 2
m, \ldots, 2m - 1 3
2n 1

If $n = 2m$:

-3 $\binom{2m-1}{2}$
-2, -1, \ldots, m - 4 3
m - 3 2
m - 1, \ldots, 2m - 2 3
2n 1

When $d = 4$, the spectrum is integral for $n \leq 30$.

When $d = 5$, the spectrum is integral for $n \leq 25$.

Martin and Wagner conjecture that the spectrum of $SR(d, n)$ is always integral.
For fixed d, n, we partition $V(d, n)$ into subsets V_1, V_2, \ldots where V_i is the set of all vertices with exactly i nonzero coordinates.

This partition is equitable.
For fixed d, n, we partition $V(d, n)$ into subsets V_1, V_2, \ldots where V_i is the set of all vertices with exactly i nonzero coordinates.

This partition is equitable.

The quotient matrix of this partition is

\[
Q = \begin{pmatrix}
 a_1 & b_1 & 0 & \cdots & 0 \\
 c_2 & a_2 & b_2 & \ddots & \vdots \\
 0 & c_3 & \ddots & \ddots & 0 \\
 \vdots & \vdots & \ddots & a_{m-1} & b_{m-1} \\
 0 & \cdots & 0 & c_m & a_m
\end{pmatrix},
\]

where $a_i = (n - i)(i - 1) + i(d - i)$, $b_i = (n - i)(d - i)$, $c_i = i(i - 1)$, and $m = \min\{n, d\}$.
Partial Spectrum of $SR(d, n)$

- Every eigenvalue of a quotient matrix of an equitable partition of a graph is also an eigenvalue of the adjacency matrix, so:

$$\mu_i = (d - i)n - (i - 1)(d - (i - 1))$$ is an eigenvalue of $SR(d, n)$.

The proof includes the eigenvectors of Q, which can be extended to eigenvectors of $SR(d, n)$.

Cioabă, Haemers, Vermette

Simplicial Rook Graphs
Every eigenvalue of a quotient matrix of an equitable partition of a graph is also an eigenvalue of the adjacency matrix, so:

Proposition

For fixed \(n, d \), let \(m = \min\{n, d\} \). For each \(i \in [m] \),

\[
\mu_i = (d - i)n - (i - 1)(d - (i - 1))
\]

is an eigenvalue of \(SR(d, n) \).
Every eigenvalue of a quotient matrix of an equitable partition of a graph is also an eigenvalue of the adjacency matrix, so:

Proposition

For fixed n, d, let $m = \min\{n, d\}$. For each $i \in [m]$,

$$
\mu_i = (d - i)n - (i - 1)(d - (i - 1))
$$

is an eigenvalue of $SR(d, n)$.

The proof includes the eigenvectors of Q, which can be extended to eigenvectors of $SR(d, n)$.

Partial Spectrum of $SR(d, n)$
Diameter of $SR(d, n)$

Proposition

For any fixed n, d, the diameter of $SR(d, n)$ is $\min\{d - 1, n\}$.
Proposition

For any fixed n, d, the diameter of $SR(d, n)$ is $\min\{d - 1, n\}$.

Key facts for the proof:

- The diameter is trivially at most n, and (if $n < d$) the vertices $(n, 0, \ldots, 0)$ and $(0, 1, \ldots, 1, 0, \ldots, 0)$ are at distance n.
Proposition

For any fixed n, d, the diameter of $\text{SR}(d, n)$ is $\min\{d - 1, n\}$.

Key facts for the proof:

- The diameter is trivially at most n, and (if $n < d$) the vertices $(n, 0, \ldots, 0)$ and $(0, 1, \ldots, 1, 0, \ldots, 0)$ are at distance n.
- A vertex in V_i only has neighbors in V_{i-1}, V_i, and V_{i+1}, so the diameter is at least $d - 1$ if $n \geq d$.
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \[\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n \} \]
 is a clique of size $n + 1$.

Cioabă, Haemers, Vermette
Simplicial Rook Graphs
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set $
\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}$ is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Clique Number of $SR(d, n)$

Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 $\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}$ is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \(\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}\) is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 $$\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}$$
 is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \[
 \{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}
 \]
 is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \[\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\} \]
 is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \[\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\} \]
 is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:
Clique Number of $SR(d, n)$

Proposition

For any fixed n, d, the clique number of $SR(d, n)$ is $\max\{d, n + 1\}$.

- The set V_1 is a clique of size d, while the set
 \[\{(x, y, 0, \ldots, 0) \mid x, y \geq 0, x + y = n\}\]
 is a clique of size $n + 1$.
- There are only two types of maximal cliques in $SR(d, n)$:

![Graph of SR(d, n)](image)
Martin and Wagner asked for what values of d and n the graph $SR(d, n)$ is DS.
When is $SR(d, n)$ Determined by its Spectrum (DS)?

Martin and Wagner asked for what values of d and n the graph $SR(d, n)$ is DS.

- $SR(3, 3)$ is DS because it is the complement of a cubic graph on 10 vertices.
Martin and Wagner asked for what values of \(d \) and \(n \) the graph \(SR(d, n) \) is DS.

- \(SR(3, 3) \) is DS because it is the complement of a cubic graph on 10 vertices.
- \(SR(2, n) \) and \(SR(d, 1) \) are DS because they are complete.
Martin and Wagner asked for what values of d and n the graph $SR(d, n)$ is DS.

- $SR(3, 3)$ is DS because it is the complement of a cubic graph on 10 vertices.
- $SR(2, n)$ and $SR(d, 1)$ are DS because they are complete.
- $SR(d, 2) \cong T(d + 1)$ is DS unless $d = 7$ since the triangular graph $T(k)$ is DS unless $k = 8$.
Using Godsil-McKay switching we find that:

- $SR(4, n)$ is not DS for $n \geq 3$.
 - V_1 is a Godsil-McKay switching set.
 - The graph resulting from switching is not isomorphic to $SR(4, n)$.
Using Godsil-McKay switching we find that:

- $SR(4, n)$ is not DS for $n \geq 3$.
 - V_1 is a Godsil-McKay switching set.
 - The graph resulting from switching is not isomorphic to $SR(4, n)$.

- $SR(d, 3)$ is not DS for $d \geq 4$.
 - The set $\{(3, 0, 0, \ldots, 0), (2, 1, 0, \ldots, 0), (1, 2, 0, \ldots, 0), (0, 3, 0, \ldots, 0)\}$ is a Godsil-McKay switching set.
 - The graph resulting from switching is not isomorphic to $SR(d, 3)$.
Using Godsil-McKay switching we find that:
- $SR(4, n)$ is not DS for $n \geq 3$.
 - V_1 is a Godsil-McKay switching set.
 - The graph resulting from switching is not isomorphic to $SR(4, n)$.
- $SR(d, 3)$ is not DS for $d \geq 4$.
 - The set $\{(3, 0, 0, \ldots, 0), (2, 1, 0, \ldots, 0), (1, 2, 0, \ldots, 0), (0, 3, 0, \ldots, 0)\}$ is a Godsil-McKay switching set.
 - The graph resulting from switching is not isomorphic to $SR(d, 3)$.

We have found 3 nonisomorphic graphs with the spectrum of $SR(4, 3)$.
We found that the spectrum of $SR(d, 3)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(d - 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$2d - 5$</td>
<td>d</td>
</tr>
<tr>
<td>$d - 3$</td>
<td>$d - 1$</td>
</tr>
<tr>
<td>$d - 5$</td>
<td>$\binom{d}{2}$</td>
</tr>
<tr>
<td>-3</td>
<td>$d(d^2 - 7)/6$</td>
</tr>
</tbody>
</table>
We found that the spectrum of $SR(d, 3)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(d - 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$2d - 5$</td>
<td>d</td>
</tr>
<tr>
<td>$d - 3$</td>
<td>$d - 1$</td>
</tr>
<tr>
<td>$d - 5$</td>
<td>$\binom{d}{2}$</td>
</tr>
<tr>
<td>-3</td>
<td>$M(d, 3) = d(d^2 - 7)/6$</td>
</tr>
</tbody>
</table>
We found that the spectrum of $SR(d, 3)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(d - 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$2d - 5$</td>
<td>d</td>
</tr>
<tr>
<td>$d - 3$</td>
<td>$d - 1$</td>
</tr>
<tr>
<td>$d - 5$</td>
<td>$\binom{d}{2}$</td>
</tr>
<tr>
<td>-3</td>
<td>$M(d, 3) = d(d^2 - 7)/6$</td>
</tr>
</tbody>
</table>

To do this, we:

- Found a correspondence between vertices in $SR(d, 3)$ and $J(d + 2, 3)$.
We found that the spectrum of $SR(d, 3)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(d - 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$2d - 5$</td>
<td>d</td>
</tr>
<tr>
<td>$d - 3$</td>
<td>$d - 1$</td>
</tr>
<tr>
<td>$d - 5$</td>
<td>$\binom{d}{2}$</td>
</tr>
<tr>
<td>-3</td>
<td>$M(d, 3) = d(d^2 - 7)/6$</td>
</tr>
</tbody>
</table>

To do this, we:

- Found a correspondence between vertices in $SR(d, 3)$ and $J(d + 2, 3)$.
- Found a common equitable partition.
We found that the spectrum of $SR(d, 3)$ is:

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(d - 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$2d - 5$</td>
<td>d</td>
</tr>
<tr>
<td>$d - 3$</td>
<td>$d - 1$</td>
</tr>
<tr>
<td>$d - 5$</td>
<td>$\binom{d}{2}$</td>
</tr>
<tr>
<td>-3</td>
<td>$M(d, 3) = d(d^2 - 7)/6$</td>
</tr>
</tbody>
</table>

To do this, we:

- Found a correspondence between vertices in $SR(d, 3)$ and $J(d + 2, 3)$.
- Found a common equitable partition.
- Built spectrum of $SR(d, 3)$ from that of $J(d + 2, 3)$.
The partial permutohedra in $SR(d, n)$ are induced subgraphs built using permutations on d letters with n inversions.
The partial permutohedra in $SR(d, n)$ are induced subgraphs built using permutations on d letters with n inversions.

These subgraphs are bipartite, n-regular, and give $SR(d, n)$ the eigenvalue $-n$ with multiplicity $M(d, n)$.

Martin and Wagner show they are integral when $d \leq 6$ (and $n \leq \left(\frac{d^2}{2}\right)$) and conjecture they are always integral. We show that they are integral for $n \leq 8$ for any value of d (such that $n \leq \left(\frac{d^2}{2}\right)$).
The partial permutohedra in $SR(d, n)$ are induced subgraphs built using permutations on d letters with n inversions.

These subgraphs are bipartite, n-regular, and give $SR(d, n)$ the eigenvalue $-n$ with multiplicity $M(d, n)$.

Martin and Wagner show they are integral when $d \leq 6$ (and $n \leq \binom{d}{2}$) and conjecture they are always integral.
The partial permutohedra in $SR(d, n)$ are induced subgraphs built using permutations on d letters with n inversions.

These subgraphs are bipartite, n-regular, and give $SR(d, n)$ the eigenvalue $-n$ with multiplicity $M(d, n)$.

Martin and Wagner show they are integral when $d \leq 6$ (and $n \leq \binom{d}{2}$) and conjecture they are always integral.

We show that they are integral for $n \leq 8$ for any value of d (such that $n \leq \binom{d}{2}$).
Future Work

- Find the spectrum of $SR(d, n)$ for more cases.

Cioabă, Haemers, Vermette Simplicial Rook Graphs
Future Work

- Find the spectrum of $SR(d, n)$ for more cases.
- Find the values of d, n for which $SR(d, n)$ is DS (or not DS).
Future Work

- Find the spectrum of $SR(d, n)$ for more cases.
- Find the values of d, n for which $SR(d, n)$ is DS (or not DS).
- Prove (or disprove) that $SR(d, n)$ is always integral.
Future Work

- Find the spectrum of \(SR(d, n) \) for more cases.
- Find the values of \(d, n \) for which \(SR(d, n) \) is DS (or not DS).
- Prove (or disprove) that \(SR(d, n) \) is always integral.
- Prove (or disprove) that the partial permutohedra are always integral.
Future Work

- Find the spectrum of $SR(d, n)$ for more cases.
- Find the values of d, n for which $SR(d, n)$ is DS (or not DS).
- Prove (or disprove) that $SR(d, n)$ is always integral.
- Prove (or disprove) that the partial permutohedra are always integral.
- Find the independence number of $SR(d, n)$, which is the number of mutually nonattacking rooks which can be placed on a $(d - 1)$-dimensional simplicial chessboard with $n + 1$ tiles on each side (known only for $d = 3$).