On circulant graphs isomorphic to Cayley graphs of more than one abelian group

Ted Dobson

Department of Mathematics & Statistics
Mississippi State University
and
IAM, University of Primorska
dobson@math.msstate.edu
http://www2.msstate.edu/~dobson/

Joint work with Joy Morris of the University of Lethbridge
Definition

Let G be a group and $S \subset G$.

A Cayley digraph of a cyclic group of order n is circulant digraph of order n.
Definition

Let G be a group and $S \subseteq G$. Define a **Cayley digraph of G**,

Figure: The Cayley graph $\text{Cay}(\mathbb{Z}_{10}, \{1, 3, 7, 9\})$
Definition

Let G be a group and $S \subseteq G$. Define a Cayley digraph of G, denoted $\text{Cay}(G, S)$,
Definition

Let G be a group and $S \subset G$. Define a Cayley digraph of G, denoted $\text{Cay}(G, S)$, to be the digraph with $V(\text{Cay}(G, S)) = G$ and $E(\text{Cay}(G, S)) = \{(g, gs) : g \in G, s \in S\}$.
Let G be a group and $S \subset G$. Define a **Cayley digraph of G**, denoted $\text{Cay}(G, S)$, to be the digraph with $V(\text{Cay}(G, S)) = G$ and $E(\text{Cay}(G, S)) = \{(g, gs) : g \in G, s \in S\}$. We call S the **connection set of** $\text{Cay}(G, S)$.
Definition

Let G be a group and $S \subset G$. Define a **Cayley digraph of G**, denoted $\text{Cay}(G, S)$, to be the digraph with $V(\text{Cay}(G, S)) = G$ and $E(\text{Cay}(G, S)) = \{(g, gs) : g \in G, s \in S\}$. We call S the **connection set of** $\text{Cay}(G, S)$. A Cayley digraph of a cyclic group of order n is **circulant digraph of order n**.
Definition

Let G be a group and $S \subseteq G$. Define a \textit{Cayley digraph of G}, denoted $\text{Cay}(G, S)$, to be the digraph with $V(\text{Cay}(G, S)) = G$ and $E(\text{Cay}(G, S)) = \{(g, gs) : g \in G, s \in S\}$. We call S the \textit{connection set} of $\text{Cay}(G, S)$. A Cayley digraph of a cyclic group of order n is \textit{circulant digraph} of order n.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{cayley_graph.png}
\caption{The Cayley graph $\text{Cay}(\mathbb{Z}_{10}, \{1, 3, 7, 9\})$}
\end{figure}
Definition

For a group G, the \textit{left regular representation of G},

$$G_L = \{ x \rightarrow gx : g \in G \}.$$
For a group G, the \textit{left regular representation} of G, denoted G_L, is the subgroup of S_G given by the left translations of G. More specifically, $G_L = \{ x \rightarrow gx : g \in G \}$. We denote the map $x \rightarrow gx$ by g_L. It is straightforward to verify that G_L is a group and that $G_L \cong G$. It is easy to show $G_L \leq \text{Aut}(\text{Cay}(G, S))$ for every $S \subset G$.

 Ted Dobson

 On circulant graphs isomorphic to Cayley graphs of more than
Definition

For a group G, the **left regular representation of G**, denoted G_L, is the subgroup of S_G given by the left translations of G.

More specifically, $G_L = \{ x \rightarrow gx : g \in G \}$.

We denote the map $x \rightarrow gx$ by g_L.

It is straightforward to verify that G_L is a group and that $G_L \cong G$.

It is easy to show $G_L \leq \text{Aut}(\text{Cay}(G, S))$ for every $S \subset G$.

Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than
Definition

For a group G, the left regular representation of G, denoted G_L, is the subgroup of S_G given by the left translations of G. More specifically, $G_L = \{ x \to gx : g \in G \}$.

Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than
For a group G, the left regular representation of G, denoted G_L, is the subgroup of S_G given by the left translations of G. More specifically, $G_L = \{ x \rightarrow gx : g \in G \}$. We denote the map $x \rightarrow gx$ by g_L.
For a group G, the **left regular representation of G,** denoted G_L, is the subgroup of S_G given by the left translations of G. More specifically, $G_L = \{ x \rightarrow gx : g \in G \}$. We denote the map $x \rightarrow gx$ by g_L. It is straightforward to verify that G_L is a group and that $G_L \cong G$.
Definition

For a group G, the left regular representation of G, denoted G_L, is the subgroup of S_G given by the left translations of G. More specifically, $G_L = \{x \rightarrow gx : g \in G\}$. We denote the map $x \rightarrow gx$ by g_L. It is straightforward to verify that G_L is a group and that $G_L \cong G$.

It is easy to show $G_L \leq \text{Aut}(\text{Cay}(G, S))$ for every $S \subset G$.

Definition

Let Γ_1 and Γ_2 be digraphs.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product** of Γ_1 and Γ_2, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$\{(u, v)(u', v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\} \cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2, and no edges otherwise.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

\[
\{(u, v)(u', v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\} \cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.
\]

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed edge from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2, and no edges otherwise.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of** Γ_1 and Γ_2, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$.

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed edge from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2, and no edges otherwise.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$

$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$

$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$

$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2,
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\} \cup \{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$.

Ted Dobson On circulant graphs isomorphic to Cayley graphs of more than
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{ (u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2) \}$$

$$\cup \{ (u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2) \}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed edge from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2, and no edges otherwise.
Let Γ_1 and Γ_2 be digraphs. The **wreath product of Γ_1 and Γ_2**, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$

$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}. $$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2.
Definition

Let Γ_1 and Γ_2 be digraphs. The **wreath product** of Γ_1 and Γ_2, denoted $\Gamma_1 \wr \Gamma_2$, is the digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set

$$\{(u, v)(u, v') : u \in V(\Gamma_1) \text{ and } vv' \in E(\Gamma_2)\}$$

$$\cup\{(u, v)(u', v') : uu' \in E(\Gamma_1) \text{ and } v, v' \in V(\Gamma_2)\}.$$

Intuitively, $\Gamma_1 \wr \Gamma_2$ is constructed as follows. First, we have $|V(\Gamma_1)|$ copies of the digraph Γ_2, with these $|V(\Gamma_1)|$ copies indexed by elements of $V(\Gamma_1)$. Next, between corresponding copies of Γ_2 we place every possible directed from one copy to another if in Γ_1 there is an edge between the indexing labels of the copies of Γ_2, and no edges otherwise.
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.

Ted Dobson
On circulant graphs isomorphic to Cayley graphs of more than
To find the wreath product of any two digraphs Γ_1 and Γ_2:
1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.
2.

\[\widehat{\Gamma_1 \wr \Gamma_2} = (0, a) \cdot (0, b) \cdot (0, c) \cdot (0, d) \cdot (1, a) \cdot (1, b) \cdot (1, c) \cdot (1, d) \]
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.

$$\Gamma_1 \wr \Gamma_2$$
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.

$$
\begin{align*}
\Gamma_1 & \quad \Gamma_1 \wr \Gamma_2 \\
0 & \quad (0, a) \\
1 & \quad (0, b) \\
a & \quad (0, c) \\
d & \quad (0, d) \\
b & \quad (1, a) \\
c & \quad (1, b) \\
d & \quad (1, c) \\
& \quad (1, d)
\end{align*}
$$
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.

$\Gamma_1 \tripl \Gamma_2$

Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than one abelian group
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.
2. If v_1 and v_2 are adjacent in Γ_1, put every edge between corresponding copies of Γ_2.

\[
\Gamma_1 \wr \Gamma_2
\]
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.
2. If v_1 and v_2 are adjacent in Γ_1, put every edge between corresponding copies of Γ_2.

$$\Gamma_1 \rtimes \Gamma_2$$
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.
2. If v_1 and v_2 are adjacent in Γ_1, put every edge between corresponding copies of Γ_2.
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First corresponding to each vertex of Γ_1, put a copy of Γ_2.
2. If v_1 and v_2 are adjacent in Γ_1, put every edge between corresponding copies of Γ_2.

$$\Gamma_1 \wr \Gamma_2$$
To find the wreath product of any two digraphs Γ_1 and Γ_2:

1. First, corresponding to each vertex of Γ_1, put a copy of Γ_2.
2. If v_1 and v_2 are adjacent in Γ_1, put every edge between corresponding copies of Γ_2.

\[
\begin{align*}
\Gamma_1 \wr \Gamma_2 & \approx \begin{pmatrix}
(0, a) & (1, a) \\
(0, b) & (1, b) \\
(0, c) & (1, c) \\
(0, d) & (1, d)
\end{pmatrix}
\end{align*}
\]
Let us consider the graph $C_8 \wr \overline{K}_2$.
Let us consider the graph $C_8 \wr \overline{K}_2$.

![Diagram](attachment:image_url)

Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than
On circulant graphs isomorphic to Cayley graphs of more than one abelian group.
On circulant graphs isomorphic to Cayley graphs of more than one abelian group
On circulant graphs isomorphic to Cayley graphs of more than one abelian group
Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than one abelian group
On circulant graphs isomorphic to Cayley graphs of more than one abelian group.
On circulant graphs isomorphic to Cayley graphs of more than one abelian group
On circulant graphs isomorphic to Cayley graphs of more than one abelian group
On circulant graphs isomorphic to Cayley graphs of more than one abelian group
Theorem (Morris, 1998)

Let \(\Gamma = \text{Cay}(G, S) \) be a Cayley digraph on an abelian group \(G \) of order \(p^n \), where \(p \) is an odd prime. Then the following are equivalent:

1. The digraph \(\Gamma \) is isomorphic to a Cayley digraph on both \(\mathbb{Z}_{p^n} \) and \(H \), where \(H \) is an abelian group with \(|H| = p^n \), say
 \[H = \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \times \ldots \times \mathbb{Z}_{p^{k_m}}, \]
 where \(k_1 + \ldots + k_m = n \).

2. There exist a chain of subgroups \(G_1 \leq \ldots \leq G_{m-1} \) in \(G \) such that
 1. \(G_1, G_2/G_1, \ldots, G/G_{m-1} \) are cyclic groups;
 2. \(G_1 \times G_2/G_1 \times \ldots \times G/G_{m-1} \triangleleft_{po} H; \)
 3. For all \(s \in S \setminus G_i \), we have \(sG_i \subseteq S \), for \(i = 1, \ldots, m-1 \). (That is, \(S \setminus G_i \) is a union of cosets of \(G_i \).)
3. There exist Cayley digraphs U_1, \ldots, U_m on cyclic p-groups H_1, \ldots, H_m such that $H_1 \times \ldots \times H_m \prec_{po} H$ and $\Gamma \cong U_m \wr \ldots \wr U_1$.

These in turn imply:

4. Γ is isomorphic to Cayley digraphs on every abelian group of order p^n that is greater than H in the partial order.
3. There exist Cayley digraphs U_1, \ldots, U_m on cyclic p-groups H_1, \ldots, H_m such that $H_1 \times \ldots \times H_m \prec_{po} H$ and $\Gamma \cong U_m \amalg \ldots \amalg U_1$.

These in turn imply:

4. Γ is isomorphic to Cayley digraphs on every abelian group of order p^n that is greater than H in the partial order.

This generalized work of Joseph (1995) $n = 2$.
Theorem

3. There exist Cayley digraphs U_1, \ldots, U_m on cyclic p-groups H_1, \ldots, H_m such that $H_1 \times \ldots \times H_m \prec_{po} H$ and $\Gamma \cong U_m \wr \ldots \wr U_1$.

These in turn imply:

4. Γ is isomorphic to Cayley digraphs on every abelian group of order p^n that is greater than H in the partial order.

This generalized work of Joseph (1995) $n = 2$. The case where $p = 2$ was recently proven by Kovács and Servetius (2012).
The idea behind this paper is to reduce the case for general n in the above theorem to the prime-power case.

By Sabidussi, we would have transitive groups G_1 and G_2 of order n in $\text{Aut}(\Gamma)$, G_1 cyclic and G_2 abelian. We would want the Sylow p-subgroup of G_1 to "interact" with the Sylow p-subgroup of G_2, but the p'-subgroup of G_1 to commute with the Sylow p-subgroup of G_2 and the p'-subgroup of G_2 to commute with the Sylow p-subgroup of G_1.

Another way of phrasing this is that we would like $\langle G_1, G_2 \rangle$ to be nilpotent!
The idea behind this paper is to reduce the case for general n in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi:

A digraph Γ is isomorphic to a Cayley digraph of a group G of order n if and only if $\text{Aut}(\Gamma)$ contains a transitive subgroup isomorphic to G.

What would it mean in this context for the problem to reduce to the prime-power case? By Sabidussi, we would have transitive groups G_1 and G_2 of order in $\text{Aut}(\Gamma)$, G_1 cyclic and G_2 abelian. We would want the Sylow p-subgroup of G_1 to "interact" with the Sylow p-subgroup of G_2, but the p'-subgroup of G_1 to commute with the Sylow p-subgroup of G_2 and the p'-subgroup of G_2 to commute with the Sylow p-subgroup of G_1.

Another way of phrasing this is that we would like $\langle G_1, G_2 \rangle$ to be nilpotent!
The idea behind this paper is to reduce the case for general n in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi: A digraph Γ is isomorphic to a Cayley digraph of a group G of order n if and only if $\text{Aut}(\Gamma)$ contains a transitive subgroup isomorphic to G.

What would it mean in this context for the problem to reduce to the prime-power case?

By Sabidussi, we would have transitive groups G_1 and G_2 of order in \sqrt{n} in $\text{Aut}(\Gamma)$, G_1 cyclic and G_2 abelian. We would want the Sylow p-subgroup of G_1 to "interact" with the Sylow p-subgroup of G_2, but the p'-subgroup of G_1 to commute with the Sylow p-subgroup of G_2 and the p'-subgroup of G_2 to commute with the Sylow p-subgroup of G_1.

Another way of phrasing this is that we would like $\langle G_1, G_2 \rangle$ to be nilpotent!
The idea behind this paper is to reduce the case for general n in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi: A digraph Γ is isomorphic to a Cayley digraph of a group G of order n if and only if $\text{Aut}(\Gamma)$ contains a transitive subgroup isomorphic to G.

What would it mean in this context for the problem to reduce to the prime-power case?
The idea behind this paper is to reduce the case for general \(n \) in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi: A digraph \(\Gamma \) is isomorphic to a Cayley digraph of a group \(G \) of order \(n \) if and only if \(\text{Aut}(\Gamma) \) contains a transitive subgroup isomorphic to \(G \).

What would it mean in this context for the problem to reduce to the prime-power case? By Sabidussi, we would have transitive groups \(G_1 \) and \(G_2 \) of order in \(n \) in \(\text{Aut}(\Gamma) \), \(G_1 \) cyclic and \(G_2 \) abelian.
The idea behind this paper is to reduce the case for general n in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi: A digraph Γ is isomorphic to a Cayley digraph of a group G of order n if and only if $\text{Aut}(\Gamma)$ contains a transitive subgroup isomorphic to G.

What would it mean in this context for the problem to reduce to the prime-power case? By Sabidussi, we would have transitive groups G_1 and G_2 of order in n in $\text{Aut}(\Gamma)$, G_1 cyclic and G_2 abelian. We would want the Sylow p-subgroup of G_1 to “interact” with the Sylow p-subgroup of G_2, but the p'-subgroup of G_1 to commute with the Sylow p-subgroup of G_2 and the p'-subgroup of G_2 to commute with the Sylow p-subgroup of G_1.

Ted Dobson

On circulant graphs isomorphic to Cayley graphs of more than
The idea behind this paper is to reduce the case for general \(n \) in the above theorem to the prime-power case. We need the characterization of Cayley digraphs by Sabidussi: A digraph \(\Gamma \) is isomorphic to a Cayley digraph of a group \(G \) of order \(n \) if and only if \(\text{Aut}(\Gamma) \) contains a transitive subgroup isomorphic to \(G \).

What would it mean in this context for the problem to reduce to the prime-power case? By Sabidussi, we would have transitive groups \(G_1 \) and \(G_2 \) of order in \(n \) in \(\text{Aut}(\Gamma) \), \(G_1 \) cyclic and \(G_2 \) abelian. We would want the Sylow \(p \)-subgroup of \(G_1 \) to “interact” with the Sylow \(p \)-subgroup of \(G_2 \), but the \(p' \)-subgroup of \(G_1 \) to commute with the Sylow \(p \)-subgroup of \(G_2 \) and the \(p' \)-subgroup of \(G_2 \) to commute with the Sylow \(p \)-subgroup of \(G_1 \). Another way of phrasing this is that we would like \(\langle G_1, G_2 \rangle \) to be nilpotent!
Theorem (Muzychuk, 1998)

Let G_1 and G_2 be transitive cyclic subgroups of S_n of order n. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1}G_2\delta \rangle$ is solvable and normally m-step imprimitive.

Theorem

Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1}G_2\delta \rangle$ is solvable and normally m-step imprimitive.
Theorem (Muzychuk, 1998)

Let G_1 and G_2 be transitive cyclic subgroups of S_n of order n. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1} G_2 \delta \rangle$ is solvable and normally m-step imprimitive.
Theorem (Muzychuk, 1998)

Let G_1 and G_2 be transitive cyclic subgroups of S_n of order n. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1} G_2 \delta \rangle$ is solvable and normally m-step imprimitive.

Theorem

Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic.
Theorem (Muzychuk, 1998)

Let G_1 and G_2 be transitive cyclic subgroups of S_n of order n. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1}G_2\delta \rangle$ is solvable and normally m-step imprimitive.

Theorem

Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1}G_2\delta \rangle$ is solvable and normally m-step imprimitive.
Theorem (Dobson, 2003)

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$.

Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. Then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1}G_2\delta \rangle$ is nilpotent.
Theorem (Dobson, 2003)

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic.

Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic.
Theorem (Dobson, 2003)

Let \(k = p_1 \ldots p_r \) be such that \(\gcd(k, \varphi(k)) = 1 \) where each \(p_i \) is prime, and \(n = p_1^{a_1} \ldots p_r^{a_r} \). Let \(G_1 \) and \(G_2 \) be transitive abelian subgroups of \(S_n \) of order \(n \) with \(G_1 \) cyclic. If \(\langle G_1, G_2 \rangle \) is normally \(m \)-step imprimitive,
Theorem (Dobson, 2003)

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. If $\langle G_1, G_2 \rangle$ is normally m-step imprimitive, then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1} G_2 \delta \rangle$ is nilpotent.
Theorem (Dobson, 2003)

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. If $\langle G_1, G_2 \rangle$ is normally m-step imprimitive, then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1} G_2 \delta \rangle$ is nilpotent.

Theorem

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$.
Theorem (Dobson, 2003)

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic. If $\langle G_1, G_2 \rangle$ is normally m-step imprimitive, then there exists $\delta \in \langle G_1, G_2 \rangle$ such that $\langle G_1, \delta^{-1} G_2 \delta \rangle$ is nilpotent.

Theorem

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let G_1 and G_2 be transitive abelian subgroups of S_n of order n with G_1 cyclic.
Theorem (Dobson, 2003)

Let \(k = p_1 \ldots p_r \) be such that \(\gcd(k, \varphi(k)) = 1 \) where each \(p_i \) is prime, and \(n = p_1^{a_1} \ldots p_r^{a_r} \). Let \(G_1 \) and \(G_2 \) be transitive abelian subgroups of \(S_n \) of order \(n \) with \(G_1 \) cyclic. If \(\langle G_1, G_2 \rangle \) is normally \(m \)-step imprimitive, then there exists \(\delta \in \langle G_1, G_2 \rangle \) such that \(\langle G_1, \delta^{-1}G_2\delta \rangle \) is nilpotent.

Theorem

Let \(k = p_1 \ldots p_r \) be such that \(\gcd(k, \varphi(k)) = 1 \) where each \(p_i \) is prime, and \(n = p_1^{a_1} \ldots p_r^{a_r} \). Let \(G_1 \) and \(G_2 \) be transitive abelian subgroups of \(S_n \) of order \(n \) with \(G_1 \) cyclic. Then there exists \(\delta \in \langle G_1, G_2 \rangle \) such that \(\langle G_1, \delta^{-1}G_2\delta \rangle \) is nilpotent.
Theorem

Let $k = p_1 \ldots p_r$ be such that $\gcd(k, \varphi(k)) = 1$ where each p_i is prime, and $n = p_1^{a_1} \ldots p_r^{a_r}$. Let $\Gamma = \text{Cay}(G, S)$ be a Cayley digraph on an abelian group G of order n. Then the following are equivalent:

1. The digraph Γ is isomorphic to a Cayley digraph on both \mathbb{Z}_n and H, where H is an abelian group with $|H| = n$, say $H = \prod_{i=1}^{r} \prod_{j=1}^{m_i} \mathbb{Z}_{p_i^{k_{i,j}}}$, where $\sum_{j=1}^{m_i} k_{i,j} = a_i$.

2. Let P_i be a Sylow p_i-subgroup of G. There exist a chain of subgroups $P_{i,1} \leq \ldots \leq P_{i,m_i-1}$ in P_i such that
 - $P_{i,1}, P_{i,2}/P_{i,1}, \ldots, P_{i}/P_{i,m_i-1}$ are cyclic groups of prime-power order;
 - $P_{i,1} \times P_{i,2}/P_{i,1} \times \ldots \times P_{i}/P_{i,m_i-1} \vartriangleleft_p H_i$, where H_i is a Sylow p_i-subgroup of H;
 - For all $s \in S \setminus (P_{i,j} \times G'_{i})$, we have $sP_{i,j} \subseteq S$, for $j = 1, \ldots, m_i - 1$, where G'_{i} is a p'_i-subgroup of G. (That is, $S \setminus (P_{i,j} \times G'_{i})$ is a union of cosets of $P_{i,j}$.)
Theorem

3. There exist Cayley digraphs $U_{i,1}, \ldots, U_{i,m_i}$ on cyclic p_i-groups $K_{i,1}, \ldots, K_{i,m_i}$ such that $K_{i,1} \times \ldots \times K_{i,m_i} \preceq_{po} H_i$, $\Gamma_i \cong U_{i,m_i} \wr \ldots \wr U_{i,1}$, and Γ is of product type $\Gamma_1, \ldots, \Gamma_r$.

These in turn imply:

4. Γ is isomorphic to Cayley digraphs on every abelian group of order n that is greater than H in the partial order.
Theorem

3. There exist Cayley digraphs $U_{i,1}, \ldots, U_{i,m_i}$ on cyclic p_i-groups $K_{i,1}, \ldots, K_{i,m_i}$ such that $K_{i,1} \times \ldots \times K_{i,m_i} \prec_{po} H_i$, $\Gamma_i \cong U_{i,m_i} \wr \ldots \wr U_{i,1}$, and Γ is of product type $\Gamma_1, \ldots, \Gamma_r$.

These in turn imply:

4. Γ is isomorphic to Cayley digraphs on every abelian group of order n that is greater than H in the partial order.

Definition

Let $\Gamma_1, \ldots, \Gamma_k$ be digraphs. We say that Γ is of product type $\Gamma_1, \ldots, \Gamma_k$ if $\text{Aut}(\Gamma_1) \times \ldots \times \text{Aut}(\Gamma_k) \leq \text{Aut}(\Gamma)$.
The “input” into the proof of the previous result is that $\langle (\mathbb{Z}/n\mathbb{Z})^L, H \rangle$ is nilpotent, and so does not depend in general on the value of n. To reduce the general case to prime-powers one would need to generalize Muzychuk’s solution of the isomorphism problem for circulants. If one wished to reduce the general case to prime-powers using group theoretic techniques, then the generalization of a theorem of Muzychuk presented here would be a natural first step.

Comments:
Comments:

- The “input” into the proof of the previous result is that $\langle (\mathbb{Z}_n)_L, H \rangle$ is nilpotent,
Comments:

- The “input” into the proof of the previous result is that $\langle (\mathbb{Z}_n)_L, H \rangle$ is nilpotent, and so does not depend in general on the value of n.
Comments:

- The “input” into the proof of the previous result is that $\langle (\mathbb{Z}_n)_L, H \rangle$ is nilpotent, and so does not depend in general on the value of n.
- To reduce the general case to prime-powers one would need to generalize Muzychuk’s solution of the isomorphism problem for circulants.
Comments:

- The “input” into the proof of the previous result is that \(\langle (\mathbb{Z}_n)_L, H \rangle \) is nilpotent, and so does not depend in general on the value of \(n \).
- To reduce the general case to prime-powers one would need to generalize Muzychuk’s solution of the isomorphism problem for circulants.
- If one wished to reduce the general case to prime-powers using group theoretic techniques,
The “input” into the proof of the previous result is that $\langle (\mathbb{Z}_n)_L, H \rangle$ is nilpotent, and so does not depend in general on the value of n.

To reduce the general case to prime-powers one would need to generalize Muzychuk’s solution of the isomorphism problem for circulants.

If one wished to reduce the general case to prime-powers using group theoretic techniques, then the generalization of a theorem of Muzychuk presented here would be a natural first step.
Thanks!