Permeable Friction Course (PFC) for Improving Highway Runoff

J.B. Klenzendorf, B.J. Eck, R.J. Charbeneau, M.E. Barrett

Brandon Klenzendorf, PhD, CPESC, E.I.T.
Low Impact Development Symposium
Philadelphia, PA
September 28, 2011
Presentation Overview

- PFC Background
- Water Quality Monitoring
- Hydraulic Testing
- Hydraulic Modeling
- Conclusions
Benefits associated with driver safety and water quality
- Approved as BMP/SCM for Edwards Aquifer zone in Texas
- Considered sacrificial layer with design life of ~10 years
- Pore space can become clogged over time
 - Will drainage benefits degrade over time?
Aggregate Gradation

PFC

HMA
Where is PFC Being Used?
Improved Driver Safety

- Reduction in splash/spray
- Improved visibility
- Reduced hydroplaning
- Decreased stopping distance
BMP Assessment

- Four levels to assess performance of BMPs
 - Visual inspection
 - Capacity testing
 - Synthetic runoff testing
 - Stormwater monitoring
Monitoring Sites and Methods

Site 1

Site 2 & Site 3
TSS at Site 2

- TSS (mg/L)
- Date
- PFC
- Conventional
Effluent Concentrations from PFC

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>No. of Samples</th>
<th>TSS (mg/L)</th>
<th>SSC</th>
<th>TKN (mg/L)</th>
<th>Nitrate (mg/L)</th>
<th>Total P (μg/L)</th>
<th>Total Cu (μg/L)</th>
<th>Total Pb (μg/L)</th>
<th>Total Zn (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop 360, TX (1)²</td>
<td>48</td>
<td>8.0</td>
<td>--</td>
<td>0.79</td>
<td>0.28</td>
<td>0.04</td>
<td>11</td>
<td><1.0</td>
<td>22</td>
</tr>
<tr>
<td>Loop 360, TX (2)²</td>
<td>13</td>
<td>12</td>
<td>--</td>
<td>0.50</td>
<td>0.21</td>
<td>0.04</td>
<td>12</td>
<td><1.0</td>
<td>17</td>
</tr>
<tr>
<td>RR 620, TX²</td>
<td>8</td>
<td>6.3</td>
<td>--</td>
<td>0.62</td>
<td>0.27</td>
<td>0.04</td>
<td>7.5</td>
<td><1.0</td>
<td>18</td>
</tr>
<tr>
<td>A9, Netherlands¹</td>
<td>6</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>40</td>
<td>7.0</td>
<td>47</td>
</tr>
<tr>
<td>Interstate 95, MA³</td>
<td>18</td>
<td>--</td>
<td>88</td>
<td>--</td>
<td>--</td>
<td>0.13</td>
<td>52</td>
<td>18</td>
<td>110</td>
</tr>
<tr>
<td>Interstate 190, MA³</td>
<td>6</td>
<td>--</td>
<td>52</td>
<td>--</td>
<td>--</td>
<td>0.14</td>
<td>19</td>
<td>5.3</td>
<td>81</td>
</tr>
<tr>
<td>Interstate 93, MA³</td>
<td>5</td>
<td>--</td>
<td>710</td>
<td>--</td>
<td>--</td>
<td>0.34</td>
<td>180</td>
<td>76</td>
<td>610</td>
</tr>
<tr>
<td>Interstate 40, NC (1)⁴</td>
<td>23</td>
<td>9.0</td>
<td>--</td>
<td>0.82</td>
<td>0.39</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interstate 40, NC (2)⁴</td>
<td>23</td>
<td>17</td>
<td>--</td>
<td>0.97</td>
<td>0.40</td>
<td>0.08</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interstate 40, NC (3)⁴</td>
<td>20</td>
<td>8.0</td>
<td>--</td>
<td>1.0</td>
<td>0.76</td>
<td>0.08</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interstate 40, NC (4)⁴</td>
<td>20</td>
<td>8.4</td>
<td>--</td>
<td>1.1</td>
<td>1.1</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>A6, Germany⁵</td>
<td>--</td>
<td>56 (FS)</td>
<td>--</td>
<td>2.2b</td>
<td>--</td>
<td>70</td>
<td>96</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>A11, France⁶</td>
<td>25</td>
<td>8.2</td>
<td>--</td>
<td>1.2</td>
<td>2.1</td>
<td>--</td>
<td>20</td>
<td>8.7</td>
<td>77</td>
</tr>
</tbody>
</table>

¹ Berbee et al., 1999; ² Eck et al., 2011; ³ Smith and Granato, 2009; ⁴ Winston et al., 2011; ⁵ Stotz and Krauth, 1994; ⁶ Pagotto et al., 2000

- Value determined from five samples
- Value reported as sum of NO₃ and NO₂
Paired Samples

- Percent reduction from PFC compared to conventional pavement

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>TSS</th>
<th>SSC</th>
<th>TKN</th>
<th>Nitrate</th>
<th>Total P</th>
<th>Total Cu</th>
<th>Total Pb</th>
<th>Total Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop 360, TX (1)^2</td>
<td>-93^a</td>
<td>--</td>
<td>-25</td>
<td>6</td>
<td>-75^a</td>
<td>-60^a</td>
<td>< -90^a</td>
<td>-87^a</td>
</tr>
<tr>
<td>Loop 360, TX (2)^2</td>
<td>-91^a</td>
<td>--</td>
<td>-49</td>
<td>31</td>
<td>-66^a</td>
<td>-56^a</td>
<td>< -90^a</td>
<td>-87^a</td>
</tr>
<tr>
<td>RR 620, TX^2</td>
<td>-96^a</td>
<td>--</td>
<td>-63^a</td>
<td>46</td>
<td>-78^a</td>
<td>-69^a</td>
<td>< -96^a</td>
<td>-90^a</td>
</tr>
<tr>
<td>A9, Netherlands^1</td>
<td>-91^b</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-66^b</td>
<td>-92</td>
</tr>
<tr>
<td>Interstate 95, MA^3</td>
<td>--</td>
<td>-28</td>
<td>--</td>
<td>--</td>
<td>-35</td>
<td>8.2</td>
<td>7.6</td>
<td>-49</td>
</tr>
<tr>
<td>A11, France^6</td>
<td>-81^a</td>
<td>--</td>
<td>-43^a</td>
<td>-69^a</td>
<td>--</td>
<td>-35^a</td>
<td>-78^a</td>
<td>-66^a</td>
</tr>
</tbody>
</table>

^a Significant at 95% confidence level
^b Statistical tests were not reported, but the ranges of observed values did not overlap for this parameter

1 Berbee et al., 1999; 2 Eck et al., 2011; 3 Smith and Granato, 2009; 6 Pagotto et al., 2000
BMP Assessment

- Four levels to assess performance of BMPs
 - Visual inspection
 - Capacity testing
 - Synthetic runoff testing
 - Stormwater monitoring
PFC Core Specimens

- Laboratory measurement on core specimens
 - Three roadways: Loop 360, FM 1431, and RR 620
 - Four years: 2007 to 2010
- Lab measurement of effective porosity
- Lab measurement of hydraulic conductivity
- Develop field test to measure in-situ hydraulic conductivity
Porosity Results

- Average porosity ± one standard deviation

![Graph showing porosity results over years for different loops: Loop 360, FM 1431, RR 620. Porosity values decrease over time with error bars indicating variability.](image)
- Series of constant head tests
- No-flow and known head boundary conditions
- Two-dimensional, nonlinear cylindrical flow
Lab Constant Head Results

- Clear nonlinear relationship – Forchheimer equation
Lab Hydraulic Conductivity Results

- Average hydraulic conductivity ± one standard deviation

![Graph showing hydraulic conductivity over years for different loops such as Loop 360, FM 1431, and RR 620.](image-url)
PFC can become clogged with trapped sediment over time
Need quick, non-destructive field test to determine in-situ hydraulic conductivity
Use to assess the water quality performance of the BMP
Falling head test with nonlinear flow
Loop 360: $K = 3.0 \text{ cm/s}$
FM 1431: $K = 0.6 \text{ cm/s}$
RR 620: $K = 1.5 \text{ cm/s}$
Hydraulic Modeling

- Model PFC as an unconfined aquifer on a sloping boundary
- Couple subsurface flow with surface flow when PFC layer becomes saturated (PERFCODE)
- Solve for water depth in pavement and sheet flow depth on surface
Conclusions

- PFC provides improved water quality for TSS, total Cu, total Pb, and total Zn (sediment-bound pollutants)
- Mixed results for nutrient removal
- Effective porosity range from 12% to 23% (decrease over time?)
- Two-dimensional nonlinear flow (Forchheimer equation) modeling to determine hydraulic conductivity
- Field test for in-situ hydraulic conductivity
- Hydraulic conductivity range 0.2 to 3.0 cm/s
- PERFCODE modeling to predict water depth for design
- No maintenance on PFC in Texas with continued water quality benefits
- The roadway itself acts as the BMP!
Acknowledgements

- TxDOT Project No. 0-5220
- Gary Lantrip
- Dr. Randall Charbeneau
- Dr. Michael Barrett
- Dr. Brad Eck
Questions or Comments?

- Thank you!
TxDOT Method
- Water immediately surfaces outside of pipe resulting in little flow through PFC
- No indication of actual K

New Method
- Water is forced to flow through PFC
- Can determine Forchheimer coefficients and K
What is Nonlinear Flow?

- Darcy’s Law – linear flow
 \[Q = K A \frac{\Delta h}{L} \quad \rightarrow \quad q = K I \quad \rightarrow \quad I = \frac{1}{K} q \]

- Forchheimer equation – nonlinear flow
 \[I = \frac{1}{K} q + bq^2 \]
Numerical Modeling

- **Continuity equation** in two-dimensional cylindrical coordinates

\[
\frac{1}{r} \frac{\partial}{\partial r} (rq_r) + \frac{\partial q_z}{\partial z} = 0
\]

\[I = aq + bq^2\]

- Finite difference scheme to solve continuity
- Input: core dimensions, \(h_s \), \(a \) and \(b \)
 - Calculate \(Q \) from outflow gradient
 - Develop curve of \(h_s \) vs. \(Q \)
- Output: \(\alpha \) and \(\beta \)
Approximate Analytical Solution

- Exact analytic solution provided by Carslaw and Jaeger (1959) for “infinite” core for Darcy flow

\[
h(r, z; N_i) = \frac{2}{\pi} h_s \sum_{j=-N_i}^{N_i} \sin^{-1}\left(\frac{2R_s}{\sqrt{(r - R_s)^2 + (z + 2jb_c)^2} + \sqrt{(r + R_s)^2 + (z + 2jb_c)^2}}\right)
\]

\[Q = 4Kh_sR_s\]