Qualifying Examinations Guidelines
Ph.D. Program

Villanova, Pennsylvania
1.0 Introduction

This booklet was prepared for the benefit of the Ph.D. candidate and should be read in conjunction with the College of Engineering Ph.D. Program Handbook. The purpose of this booklet is to help the student to prepare for the Villanova University College of Engineering Ph.D. Program Qualifying Examinations.

2.0 General Requirements

In order to continue their doctoral studies, all Ph.D. students are required to pass the Qualifying Examination. The Qualifying Examination will be given annually during the second week of school in the Fall and Spring semesters.

Full-time students who being their Ph.D. coursework in Fall semester are required to take the Qualifying Examination in Fall of the following year, that is at the conclusion of their second semester. Full-time students who begin their Ph.D. coursework in Spring semester are required to take the Qualifying Examination in the Spring semester of the following year, that is at the conclusion of their second semester.

Part-time students will be required to take all of the Qualifying Examination by the conclusion of their fourth semester of Ph.D. coursework.

Any request for postponing the Qualifying Examination must be submitted to the College of Engineering Ph.D. Committee Chair, in writing, at least 30 days before the examination is to be taken. Extensions will only be granted if there are extremely extenuating and documented circumstances.

Failure to pass the Qualifying Examination will result in the termination of candidacy.

3.0 Content and Conduct of the Examination

The Qualifying Examination will consist of either a written and/or oral examination in the following areas:

- Mathematics (depending on your department requirement)
- Discipline Specific

The examinations will be administered two times a year: once in the Fall Semester and once in the Spring Semester. Exam dates will be the second Wednesday (Mathematics) and second Friday (Discipline) of each semester. For full-time students, both examinations must be taken in the same period, except in the case where an examination that was previously failed is being re-taken. The requirement of taking both examinations in the same period will be waived for part-time students. The examinations are intended to demonstrate the candidate’s mastery of the subject material at the Master of Science level prior to embarking on a Ph.D. program.

3.1 Mathematics Qualifying Examination

A detailed description of the department requirements of the examination procedures, coverage, and designated preparatory courses and references is given in a following section.
3.2 Discipline Specific Qualifying Examination

Every candidate must take a qualifying examination in a disciplinary track area which is pertinent to the candidate’s emphasis of study. The disciplinary examination committee will consist of at least two full-time Villanova College of Engineering faculty members who are approved by the College Ph.D. committee. In a subsequent section, this booklet presents a listing of disciplinary track areas that have been defined by the faculty of the College of Engineering Departments, and a detailed description of the examination procedures, coverage, and designated preparatory courses and references for each disciplinary specific examination.

In some instances, it may be preferable to create a customized disciplinary examination to better reflect the interdisciplinary nature of a candidate’s probable research ear. In that case, the student’s advisor and the Ph.D. Committee will discuss and agree on the content of the examination and a suitable examining committee.

The intent of the qualifying examination is both (1) to evaluate the student’s knowledge and understanding of the materials covered in the examination, and (2) to evaluate the candidate’s potential to successfully complete a Ph.D. research program. Thus, while knowledge of the material and mathematical techniques covered in the individual examinations is important, the examiners look for much more that the ability to just memorize material. It is important that the candidate also have a good overall integrated understanding of the underlying fundamental theory so that he/she can: properly relate the mathematical techniques and physical principles and apply these to engineering problems; apply the material to a wide range of situations including situations the student may not have previously seen; and be able to demonstrate the ability to think about problems in a logical and appropriate manner.

4.0 Outcome of Qualifying Examination

The outcome of the Examination will be communicated to the student as a Pass, Partial Pass, or Failure. In the event of a Partial Pass or Fail, the student will also be informed if a second attempt at the failed examination(s) has been granted. The examination scores will not be communicated to the student.

If a second attempt is granted, the failed examination(s) must be re-taken in the next available opportunity. **No more than two attempts to pass any examination are permitted within the College of Engineering, regardless of whether the student changes departments.**

5.0 Appeals

Formal appeals to the examination results must be submitted in writing to the college Ph.D. Committee within 30 days of receiving the results of the examination. A candidate may request to look at their graded examination and discuss it with the appropriate members of the examining committee who graded the examination. The candidate however will not be allowed to remove the examination from the office, nor make a photocopy of the graded examination. The chair of the Ph.D. committee, in consultation with the appropriate Ph.D. examination committee members and the student’s advisor, will be the final arbiter of all disputes concerning grading of the examinations and the determination of pass or failure status.
6.0 Detailed Examination Descriptions

The following sections contain a detailed description of the examinations, including:
 a) Procedures to be followed for the examination (written and/or oral)
 b) Topics to be covered in each examination area
 c) Recommended reference books covering the topics to be examined
 d) Designated preparatory courses for each Qualifying Examination

It is highly recommended, but not mandatory, that the designated preparatory courses for each exam be taken prior to taking the examination. The subcommittee responsible for each exam are prepared this detailed information. Membership of each subcommittee appears under the subject heading. Students who have further questions should consult with the members of the subcommittees. A summary of the Disciplinary Specific examination tracks is given in Table 1.

The format and content of the examination may change. The candidate is advised to check with the chair of the subcommittee for each of the examinations well in advance of the examinations for an updated version of these examination guidelines.
<table>
<thead>
<tr>
<th>Department</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>Math Requirement</td>
</tr>
<tr>
<td></td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Math Requirement</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Math Requirement</td>
</tr>
<tr>
<td></td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td></td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td></td>
<td>Structural Engineering</td>
</tr>
<tr>
<td></td>
<td>Transportation Systems</td>
</tr>
<tr>
<td></td>
<td>Water Resources Engineering</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Computer Engineering</td>
</tr>
<tr>
<td></td>
<td>Computing Systems/Network Fundamentals</td>
</tr>
<tr>
<td></td>
<td>Cybersecurity</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Antennas, Microwaves and RF Circuit</td>
</tr>
<tr>
<td></td>
<td>Design Communications and Signal</td>
</tr>
<tr>
<td></td>
<td>Processing Energy Systems</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Dynamic Systems and Control</td>
</tr>
<tr>
<td></td>
<td>Solid Mechanics and Materials</td>
</tr>
<tr>
<td></td>
<td>Thermal Fluid Science</td>
</tr>
<tr>
<td>Sustainable Engineering</td>
<td>Math Requirement</td>
</tr>
<tr>
<td></td>
<td>Sustainable Engineering</td>
</tr>
</tbody>
</table>
Ph.D. candidates who take the qualifying exam in the Bioengineering disciplinary track shall have the option of satisfying the Mathematics Ph.D. Qualifying Examination requirements of any one of the Villanova University engineering programs (CEE, ChE, CpE, EE, or ME), independent of the affiliation of their faculty advisor. At least 60 days before the date of the examination, the candidate, in consultation with the Ph.D. advisor, will select the option that is best aligned with the student’s background and planned Ph.D. research area. The Ph.D. advisor will be responsible for coordinating the logistics of administration of the mathematics qualifying examination with the selected department/program.

If the selected engineering program requires the successful completion of specified coursework in mathematics, then the program’s guidelines for whether the course grade(s) constitute passing of the Ph.D. mathematics qualifying examination shall be followed. If the selected program’s mathematics requirements include one or more qualifying examinations, then the student’s performance will be jointly reviewed by the qualifying examination committees of both the administering department/program and of the Bioengineering Area; both committees shall be allowed to submit their own recommendation to the Ph.D. Committee regarding the student’s performance.
PROCEDURE AND FORMAT

The Bioengineering qualifying examination will be a combination of a written and oral examination lasting for a period not to exceed four hours in duration (three hours for the written portion and one hour for the oral portion). It will have the following format.

- The student will select three of the topic areas listed below (two from Group A and one from Group B); the selected topics must be submitted in writing at least 60 days before the date of the examination.
- The student will be given six written questions, two from each selected topic area.
- The student must answer a total of three questions, one question from each topic area.
- The level of the written examination questions will be at the M.S. level.
- The oral portion will comprise a student presentation on one or more journal articles from the bioengineering literature, followed by an open period of questions related to the article(s). The journal articles (selected by the examining committee) will focus on experimental studies, and will exclude literature from the student’s intended research area, to avoid overlap with the Dissertation Proposal examination. The presentation will be approximately 20 minutes in length, and should summarize the significance, experimental design, methods, and results of the study, and also include a critique of the paper. Questioning will probe the student’s understanding of the paper, focusing on experimental design, techniques, as well as data analysis and interpretation of results.
- Examination will be open book and open notes.
- The passing grade is 70%.

TOPICS

Group A (Select Two)

Biotransport I: Modeling and interpretation of transport in living tissue, including momentum- and mass-transfer fundamentals and applications to biofluid and mass transport phenomena in the circulatory system, kidneys, bone, and cartilage.

Preparatory Course: ME 7700 Transport Phenomena in Biological Systems (or equivalent)

Biotransport II: Analysis of biothermal and biomolecular processes in cells, tissues, and bioreactors. High- and low-temperature biothermal processes, including heat transfer, phase change, and biological injury mechanisms. Biological mass transfer processes involving chemical reactions coupled with diffusive or advective transport.

Preparatory Course: ME 9010 Bioheat and -Mass Transfer (or equivalent)

Biomaterials: Materials for use in medicine and in/on the body, material bulk and surface properties, biological responses to materials, applications, manufacturing processes, cost, sterilization, packaging and regulatory issues.

Preparatory Course: CHE 8586 Biomaterials & Drug Delivery (or equivalent)

Group B (Select One)

Upstream Bioprocess Engineering: Basics of biochemistry, microbiology, cell biology and molecular biology, as applied to bioproduct formation; enzyme kinetics, immobilized enzymes, diffusion limitations, immobilized enzyme reactors; cell growth kinetics, batch and continuous fermentor operation, bioreactor operation; sterilization, oxygen transfer and scale-up.

Preparatory Course: CHE 8588 Biochemical Engineering I (or equivalent)

Downstream Bioprocess Engineering: Fed-batch, continuous, immobilized-cell and other advanced bioreactors; bioreactor monitoring and control; design and operation of downstream processes, including cell disruption, filtration, extraction, chromatography; facility design; validation and regulatory issues.

Preparatory Course: CHE 8589 Biochemical Engineering II (or equivalent)

CHEMICAL ENGINEERING

MATH QUALIFYING EXAMINATION
June 2015

a) Take ME 7000 and earn a grade of B or higher; OR

b) Take ME 7000 and either
 • ChE 8579 Advanced Process Modeling or
 • ChE 8663 Systems Biology or
 • ChE 8564 Fluid Dynamics
 and earn an average grade of B or higher.

Any PhD candidate who fails to meet these requirements within the equivalent of two years of full-time study is subject to dismissal, but may appeal the decision to the College PhD Committee.
A. PROCEDURE AND FORMAT

- This examination is to last no more than four (4) hours.
- Questions will be at the senior/first year MS level.
- The exam contains 10 questions equally divided amount five subject areas:
 A. Mass Transport Phenomena
 B. Momentum & Heat Transport Phenomena
 C. Thermodynamics
 D. Reaction Engineering
 E. Special topic: Systems Biology
- Answer any five of the 10 questions from 4 of the 5 areas in this examination.
- Each problem has the same weight.
- The examination is entirely OPEN book and OPEN notes.

B. TOPICS

1) Mass Transport Phenomena:
 - Subtopics:
 - Diffusion and Mass Transfer:
 - Continuous Contacting for Absorption and Stripping
 - Equilibrium Stage Methods for Absorption and Stripping
 - Binary Distillation
 - Multicomponent Distillation
 - Liquid Extraction (as staged contacting)
 - Distillations: Batch, Azeotropic, Extractive, Reactive
 - References:
 - Preparatory course:
 - CHE 3032: Chemical Engineering Mass Transfer
 - CHE 8571: Separation Process I
2) Momentum & Heat Transport Phenomena:

- Subtopics:
 - FLUIDS
 - Viscosity, Rheological models, Newtonian and non-Newtonian fluids
 - Navier-Stokes Equations
 - Applications of N-S equations – axial flows
 - Applications of N-S equations – curvilinear flows
 - Applications to viscometry – Newtonian and non-Newtonian fluids
 - Laminar flow applications – wire coating die
 - Power Law fluids – turbulent flow in pipes
 - Complex piping systems
 - HEAT TRANSFER
 - Conduction – Fourier’s Law
 - Unsteady conduction
 - Forced Convection
 - Natural Convection
 - Condensation and Boiling
 - Thermal design of heat exchangers
 - Effectiveness method for heat exchangers
 - Heat Transfer to non-Newtonian fluids
 - Fins, enhancement
 - Radiation

- References:
 - FLUIDS –
 - Others
 - HEAT TRANSFER –
 - Others

- Preparatory courses:
 - ChE 2032 (Undergraduate Fluid Mechanics)
 - ChE 3031 (Undergraduate heat Transfer)
 - ChE 8564 (Graduate Fluids)
 - ChE 8565 (Graduate Heat Transfer)

3) Reaction Engineering:

- Subtopics:
 - Introduction, definition reaction rate, stoichiometry and thermodynamics of reactions.
 - Conversion and extent of reaction, space time. Simple kinetic rate laws, rate laws versus mechanisms. Mass-action kinetics of irreversible reactions, heterogeneous kinetic expressions
Temperature and pressure effects on rate laws, Arrhenius rate law and an introduction to transition-state theory. Reversible reactions and equilibrium thermodynamic effects on rate laws.

Ideal Reactor Design: The batch, the continuous stirred tank reactor (CSTR) and ideal plug flow reactor (PFR). Reactor design for a single reaction

Reactor design for a multiple reactions. Series versus parallel reactions. Design for selectivity

Temperature and Pressure effects on reactor design, Energy balances for ideal reactors, non-isothermal reactor behavior, CSTR stability

Reaction kinetics for heterogeneous catalyzed reactions, adsorption and surface reactions

Fluid-solid catalytic systems: diffusion effects, effectiveness factors and Thiele modulus

References:
 [http://resolver.caltech.edu/CaltechBOOK:2003.001]

Preparatory courses: ChE / Equivalent
- CHE 3332: Chemical Reaction Engineering I
- CHE 8850: Chemical Reactor Engineering
- CHE 8851: Chemical Kinetics and Reaction Engineering

4) Thermodynamics:

Subtopics:
- The first and second law for closed and open systems, steady and unsteady state
- Equations of state, Gibbs Excess models, and partial molar properties
- Single and multicomponent phase equilibrium, fugacity
- Phase, energy, and property predictions
- Reaction equilibrium
- Partial derivative manipulations and applications

References:
- Tester and Modell, *Thermodynamics and Its Applications*, Prentice Hall

Preparatory course:
- CHE 2032: Chemical Engineering Thermodynamics I
- CHE 3131: Chemical Engineering Thermodynamics II
- CHE 8575: Thermodynamics
5) **An Engineering & Science Special Topic Based on Examinee’s Research Area (e.g. Biochemical/Bioprocessing, Energy, Materials, Environmental, Sustainability, Process Control).**
 - Exams of the special topic will be prepared by faculty who are involved in the examinee’s research’s area program. Details (sub-topics, references, and preparatory course requirement) of special topic will be provided to the examinee separately.

C. **REQUIREMENT FOR PASSING THE EXAM**
 1. A minimum grade of 4 on each problem selected using the 0-10 grading scale shown below; and
 2. A minimum of 42 points out 60 points total or 70% overall.

D. **GRADING SCALE:**
 0 - no work
 2 - little correct work
 4 - some correct work
 6 - general approach acceptable but fundamental errors
 8 - major concept correct but minor errors
 10 - complete and correct
CEE Doctoral students must meet the following Mathematics Qualification requirements:

Either: Candidates must take an advanced mathematics course from a list of courses approved by the Dept Graduate Committee (7000 level or above) and pass with a grade of B+ or better.

Or: Candidates must take a qualifying math exam and pass with a grade greater than 70%. The exam will consist of two parts: Part 1 includes selected questions pertaining to the application of math within the CEE profession. Part 2 includes questions specific to student’s area of specialization.
PROCEDURE AND FORMAT
The Environmental Engineering qualifying examination will be a written examination lasting for a period not to exceed four hours in duration. The student must earn at least a 70% on the written exam. The general format of the qualifying will be the following.

• The student will be given seven questions.
• The student may choose to answer any four questions.
• The level of the examination questions will be at the M.S. level, as represented by the level expected of students who pass the preparatory courses listed below.
• Each problem will be derived from the list of topics listed below.
• Sample problems will be provided (but no solutions).
• Examination will be open book and open notes.

TOPICS
Environmental engineering fundamentals: Ideal and non-ideal flows and reactors, reaction kinetics, chemical equilibrium, stoichiometry, acid-base chemistry, oxidation-reduction reactions, elementary organic chemistry, coordination chemistry (complexation), precipitation and dissolution, Henry’s law, basic cell biology (metabolism, growth, bioenergetics)

Biological treatment processes: Stoichiometry and kinetics of biological reactions, activated sludge processes, anaerobic processes, fixed-growth systems, nitrification and denitrification processes, Type 4 settling (state-point analysis)

Physical and chemical treatment processes: Advanced oxidation, adsorption, ion exchange, stripping, scrubbing, coagulation and flocculation, filtration, sedimentation, disinfection, emerging technologies

Fate and transport of contaminants: Physical, chemical, and biological processes governing the fate and transport of hazardous contaminants in natural and engineered systems: sorption, volatilization, biodegradation, bioconcentration/bioaccumulation, hydrolysis, photolysis, advection, dispersion and diffusion
REFERENCES

PREPARATORY COURSES

CEE 7011 Introduction to Environmental Engineering Processes
CEE 7511 Microbiology for Environmental Engineers
CEE 7513 Fate and Transport of Contaminants
CEE 7701 Aquatic Chemistry for Environmental Engineers
CEE 8708 Physical/Chemical Treatment Processes
CEE 8708 Biological Treatment Processes
PROCEDURE AND FORMAT

The discipline-specific Ph.D. qualifying examination in Structural Engineering will be a combination of a written and oral examination. The exam will consist of a 4 hour written examination followed by a 1-2 hour oral examination. The written examination will be held in the morning on the official college Qualifying Examination administration day, and the oral examination will be held either that afternoon or the following academic day. The student must earn at least a 70% on the written portion of the exam and majority of the committee must agree that the student has successfully completed the oral portion of the exam to pass.

The written exam will have the following format:

- The student will be given five questions and must answer any four of the questions
- The examination will be entirely open book/notes
- The level of the examination questions will be at the MSCE level
- Each problem will be derived from one or more of the general topical areas identified below.

TOPICAL AREAS

** Structural Mechanics:** Equilibrium; Internal Force Analysis; Friction, Sectional Properties; Stress & Strain; Mechanical Properties of Materials (metals, concrete, composites, wood, and masonry); Axial Load, Torsion, Shear, & Flexure; Combined Loadings; Stress & Strain Transformations; Stability

** Structural Analysis:** Structural Loading; Analysis of Statically Determinate and Indeterminate Trusses, Beams, and Frames by Classical and Approximate Methods; Cables and Arches; Influence Lines; Deflection Analysis; Development of Stiffness Matrices for Trusses, Beams, and Frames; Nonlinear Analysis of Frames; Numerical Solution of Plates

** Structural Dynamics:** Dynamic Response of Damped and Undamped Single, Multiple Degree-of-Freedom, and Continuous Structural Systems Subjected to Free Vibration; Forced Vibration for Harmonic and Dynamic Loading; Modal Superposition Method; Matrix Structural Analysis Approach to Dynamic Problems

** Structural Steel:** Analysis and Design of Tension, Compression, and Flexural Members; Torsion; Combined Loading; Simple Bolted & Welded Connections; Composite Design; Elastic and Plastic Analysis of Continuous Beams and Frames

** Reinforced Concrete:** Analysis and Design of Members Subjected to Flexure and/or Axial Loading; Shear and Torsion; Serviceability; Development of Reinforcement; Slenderness Effects; One-Way and Two-Way Slabs; Structural Walls; Strut-and-Tie Concepts

PREPARATORY COURSES
• All courses in the undergraduate “structural engineering track” (Mechanics I and II [Statics, Mechanics of Solids, and Civil Engineering Materials], Structural Analysis, Structural Steel Design, Reinforced Concrete Design, and Structural Engineering Capstone Design)
• CEE 7412: Modern Structural Analysis
• CEE 8434: Structural Dynamics
• CEE 8435: Reinforced Concrete
• CEE 8436: Structural Steel
PROCEDURE AND FORMAT

The Transportation Systems qualifying examination will be a combination of a written and oral examination lasting 4 hours. The written portion will be administered in the morning for a period not to exceed three hours in duration. The oral portion will be administered on a separate day (either in person or by webconference), within two weeks of the written portion, for a period not to exceed one hour. The student must earn at least a 70% on the written portion of the exam and the majority of the committee must agree that the student has successfully completed the oral portion of the exam in order to pass. The qualifying exam will have the following format:

- The student will be given seven to eight questions.
- The student may choose to answer any five questions.
- The level of the examination will be at the senior or MS level depending upon the student’s previous educational experiences.

- Each problem will be derived from the list of topics listed below and takes into consideration the courses completed by the individual students.
- Examination will be entirely open book and open notes.
- The oral portion of the exam will be an open period of questions, different from the written questions, that focus more on conceptual applications rather than detailed problem-solving.

TOPICS

Transportation systems design: Highway and railway alignment and cross-sectional design; design of highway, port, and airfield pavements; railway infrastructure design, life-cycle assessment, context sensitive solutions.

Traffic engineering: Traffic flow model, capacity analysis, traffic control and operation for highway and intersection, and intelligent transportation systems (ITS).

Highway safety: crash analysis techniques, countermeasure development and analysis, before/after analysis, safety performance function (SPF), safety evaluation methods, and work zone traffic control.

Transportation Planning: travel demand model, trip generation rate, gravity model, logit model, dynamic trip assignment, model calibration/validation, and network analysis.
Construction: Quality assurance techniques and testing; transportation project scheduling; transportation project cost estimating, project management techniques; specifications; construction methods for, and inspection of, infrastructure and other transportation elements.

Infrastructure Materials: Fundamentals of material science with applications to infrastructure materials. Composition and properties of asphalt, concrete, masonry, plastics, and wood; durability, fracture, and fatigue; materials design and nondestructive tests.

Research Topical: Additional topics identified by the committee pertaining to the student’s intended research can be related to questions in the exam.

PREPARATORY COURSES

CEE 7300 Railway Engineering
CEE 7303 Pavement Design and Analysis
CEE 8202 Transportation Planning and Operations
CEE 8203 Traffic Engineering
CEE 8205 Highway Safety
CEE 8206 Construction Project Management
CEE 8207 Design of Sustainable Transportation Systems
CEE 8439 CEE Materials
PROCEDURE AND FORMAT

The Geotechnical Engineering qualifying examination will be a combination of a written and oral examination lasting for a period not to exceed four hours in duration (three hours for the written portion and one hour for the oral portion). The written examination will be open book and open notes; while the oral portion must be completed without outside materials. The student must earn at least a 70% on the written portion of the exam and majority of the committee must agree that the student has successfully completed the oral portion of the exam to pass. The written part of the exam will have the following format:

- The student will choose to answer three out of five written questions taken from the topics below. Any single question may not combine more than two topics.
- The oral portion will be an open period of questions.
- The level of the examination will be at the senior or MS level depending upon the student's previous educational experiences.

TOPICS

- Design of shallow and/or deep foundations
- Design of retaining walls
- Transport of fluids through porous media, either saturated or unsaturated
- Consolidation and settlement of soils
- Testing of soils to determine needed properties
- Additional topics identified by the committee pertaining to the student's previous coursework and/or intended research
CIVIL AND ENVIRONMENTAL ENGINEERING
WATER RESOURCES ENGINEERING
QUALIFYING EXAMINATION

Dr. Ronald Chadderton, Dr. Robert Traver,
Dr. Bridget Wadzuk, Dr. John Komlos, Dr. Andrea Welker

Dec 2014
Subject to change

PROCEDURE AND FORMAT
The Water Resources Engineering qualifying examination will be a combination of a written and oral examination lasting for a period not to exceed four hours in duration (three hours for the written portion and one hour for the oral portion). The written examination will be held in the morning on the official college Qualifying Examination administration day, and the oral examination will be held either that afternoon or the following academic day. To satisfy the qualifying examination, the candidate needs to pass both the written an oral portions.

Written Examination - The written portion will focus on the candidate's ability “relate the mathematical techniques and physical principles … and apply these to engineering problems”.
- The student will choose to answer three out of five written questions taken from the topics below.
- The level of the examination will be at the senior or MS level depending upon the student’s previous educational experiences.
- The examination will be open book and open notes.
- The student must earn 70% to pass.

Oral Examination - The oral portion will be an open period of questions, “to demonstrate the ability to think about problems in a logical and appropriate manner.”
- The oral examination is closed, no outside materials are allowed.
- A pass fail vote will be taken at the conclusion of the session.
- The majority of the committee must agree that the student has successfully completed the oral portion of the exam to pass.

TOPICS

Fluid Mechanics: Fundamentals of fluid mechanics; conservation of mass, momentum, energy; integral or control volume formulations; incompressible, inviscid and viscous flows; Navier-Stokes equations; laminar and turbulent flows.

Hydrology: basics of hydrologic cycle and all components; surface water hydrology; groundwater hydrology; design storms; hydrographs; runoff analysis; routing; storage (reservoir) design and operation.
Hydraulics: basics of open channel and closed channel hydraulics; design of distribution systems; design of control structures; steady and unsteady flow; gradually and rapidly varying flows.

Environmental engineering fundamentals: flows and reactors; reaction kinetics; chemical equilibrium; stoichiometry; acid-base chemistry; oxidation-reduction reactions; elementary organic chemistry; coordination chemistry (complexation); precipitation and dissolution; Henry's law; fate and transport.

Sustainability: water resources planning and management; stormwater management, lake, stream and wetland systems, stream geomorphology, water supply.

Research Topic – An additional topic identified by the committee pertaining to the student’s intended research can be added at the discretion of the committee.

PREPARATORY COURSES
Undergraduate senior level electives and first year graduate courses in the Water Resources and Environmental Engineering curriculum will serve as preparatory courses for the qualifying exam.

REFERENCES
Course material from all courses in the undergraduate “water resources engineering track”, and graduate courses from the topic areas.
ECE Department’s Mathematics Qualification Requirements

a) Computer Engineering and Cybersecurity
 i) See discipline specific section.

b) Electrical Engineering
 i) Candidates must take ECE 8007, Matrix theory, and pass with a grade of B or better.

 ii) Candidates must take either ECE 8001, Engineering Math I or ME 7000, Advanced Engineering Analysis as directed by their advisor, and pass with a grade of B or better.

 iii) Candidates must take a qualifying math exam and pass with a grade greater than 70%. The exam will consist of two parts: Candidates should answer any 4 out of 6 questions in Part I which is based on topics in ECE 8001, or ME 7000. Candidates should answer any 2 out of 4 questions in Part II which is based on questions specific to student’s area of specialization. The exam is a 4-hour closed book, written exam.
Math Requirement

Grade of B or better in one of the following courses:

- ECE 8007 - Matrix Theory
- CSC 8301 - Design & Analysis of Algorithms
- MAT 7770 - Number Theory
- MAT 8435 - Mathematical Modeling
- MAT 8650 - Abstract Algebra

Computer Engineering Discipline Specific Exam

The computer engineering discipline specific exam is a written examination for a period not to exceed four hours in duration. The exam has the following format:

- The student is required to answer 8 questions with at least 2 from each of 3 subject areas out of the 4 areas. Some questions may span more than one subject area, for example a programming problem related to computer security or networks.

- The examination is closed book, closed notes, and no calculator or computing devices are permitted. In some cases, reference material may be provided to the student as an appendix to the exam questions.

- Sample problems are generally not provided.

- The examination questions are at the MS level, as represented by the level expected of students who pass the preparatory courses listed below. The list of topics is provided below for each subject area. The examination questions are derived from these lists.

Subject Areas and Topics

Computer Architecture

Components and subsystems used to construct a digital computer and the manner in which those parts interact; instruction sets, central processing units, microprogramming, intersystem communications, interrupts, DMA, and memory hierarchy; operating system demands on hardware.

Computer Security

Cryptography, privacy, and authentication including secret and public key cryptography, protocols, key management, hash functions, digital signatures, and secure electronic mail.

Applied Programming

C or Java programming including arrays, pointers, strings, structures, dynamic memory allocation, recursion, and list processing. Unix operating system including basic commands, the file system, system calls, and shell scripts.
Computer Networks

Broad Concepts: The layered reference models: ISO OSI and TCP/IP reference model, their functions and relevance, example protocols at each layer; circuit and packet switching; connection-oriented and connectionless service; LANs, MANs, WANs; network performance in terms of latency, bandwidth, throughput and utilization and their calculation; the delay-bandwidth product.

Signal Transmission: wired and wireless transmission media - twisted pair, coax, single and multi-mode fiber, RF, satellites; communication frequency spectrum; baseband and AC signaling; modulation concepts - ASK, FSK, PSK; Nyquist's and Shannon's theorems and data rate computation; bit encoding schemes - NRZ, NRZI, Manchester, and 4B/5B.

Channel Access and Error Control: Fragmentation, Framing using character counts, byte and bit flags with associated stuffing; error detection - parities, checksums, CRC; ARQ, stop-and-wait, sliding windows; the MAC sublayer in TCP/IP - Ethernet, hubs and learning bridges, spanning tree protocol, CSMA/CD; IEEE 802.11 protocols, CSMA/CA and the hidden and exposed terminal problems.

Routing: Routing tables for datagrams and virtual circuits, source routing, switching/routing architectures - workstations, cross-bars and self-routing (Batcher-Banyan) fabrics; IPv4 addressing and subnetting; ARP and DHCP; VPNs and tunneling; Intra-domain routing - DV and OSPF; Interdomain routing - BGP.

Transport: TCP state diagram, timers and handshakes for connection setup/teardown; TCP congestion control, optimizations, wireless TCP

Other Concepts: DNS, Portmapping, NAT and Firewalls, QoS - RSVP and DiffServ models; traffic shaping and policing - leaky buckets, token buckets and combinations thereof.

Introduction to Queuing Theory: Markovian system models; the M/M/1/∞, M/M/1/N, M/M/m/∞ and M/M/m/N queuing systems (both state-independent and state-dependent); global and local balance; system stability condition and computation of steady state probabilities; performance analysis - queue occupancy, utilization, throughput, response time and idleness; Little's law; Pollaczek-Khinchin mean value formula for M/G/1/∞ systems.

Preparatory Courses

ECE 8405 - Computer Organization & Design
ECE 8476 - Cryptography & Network Security
ECE 8473 - Unix and C Programming
ECE 7428 - Computer Communication Networks

References

Textbooks from the preparatory courses

Notes on network performance analysis, from Dr. Sarvesh Kulkarni: [part 1/2](#), [part 2/2](#).
Electrical and Computer Engineering

Computing Systems/Network Fundamentals
Qualifying Examination

ECE Computer Engineering Professional Group
(Char, Gupta, Kresch, Kulkarni, Perry, Wang)

Drafted: 4 May 2011

Procedure and Format

The Computing Systems/Network Fundamentals examination will be a written examination for a period not to exceed four hours in duration. It will have the following format:

- The student will be required to answer 8 questions with at least 2 from each of 3 subject areas. Some questions may span more than one subject area, for example a programming problem related to computer security or networks.
- The examination will be closed book, closed notes. In some cases, reference material may be provided to the student as an appendix to the exam questions.
- Sample problems will generally not be provided.
- The examination questions will be at the Senior/M.S. level, as represented by the level expected of students who pass the preparatory courses listed below. The list of topics is provided below for each subject area. The examination questions will be derived from these lists.

Subject Areas and Topics

Applied Programming and Numerical Methods: C or Java programming [1] including arrays, pointers, strings, bitwise operators, structures, dynamic memory allocation, recursion, and list processing. Unix operating system [2] including basic commands, the file system, system calls, and shell scripts.

Computer Security: Cryptography, privacy, and authentication [3] including secret and public key cryptography, protocols, key management, hash functions, digital signatures, and secure electronic mail.

Computer Networks:

- **Broad Concepts:** The layered reference models: ISO OSI and TCP/IP reference model, their functions and relevance, example protocols at each layer; circuit and packet switching; connection-oriented and connectionless service; LANs, MANs, WANs; network performance in terms of latency, bandwidth, throughput and utilization and their calculation; the delay-bandwidth product.
- **Signal Transmission:** wired and wireless transmission media - twisted pair, coax, single and multimode fiber, RF, satellites; communication frequency spectrum; baseband and AC signaling; modulation concepts - ASK, FSK, PSK; Nyquist's and Shannon's theorems and data rate computation; bit encoding schemes - NRZ, NRZI, Manchester, and 4B/5B.
- **Channel Access and Error Control:** Fragmentation, Framing using character counts, byte and bit flags with associated stuffing; error detection - parities, checksums, CRC; ARQ, stop-and-wait, sliding
windows; the MAC sublayer in TCP/IP - Ethernet, hubs and learning bridges, spanning tree protocol, CSMA/CD; IEEE 802.11 protocols, CSMA/CA and the hidden and exposed terminal problems.

- **Routing**: Routing tables for datagrams and virtual circuits, source routing, switching/routing architectures - workstations, cross-bars and self-routing (Batcher-Banyan) fabrics; IPv4 addressing and subnetting; ARP and DHCP; VPNs and tunneling; Intra-domain routing - DV and OSPF; Interdomain routing - BGP.
- **Transport**: TCP state diagram, timers and handshakes for connection setup/teardown; TCP congestion control, optimizations, wireless TCP
- **Other Concepts**: DNS, Portmapping, NAT and Firewalls, QoS - RSVP and DiffServ models; traffic shaping and policing - leaky buckets, token buckets and combinations thereof.
- **Introduction to Queuing Theory**: Markovian system models; the M/M/1/\(\infty\), M/M/1/N, M/M/m/\(\infty\) and M/M/m/N queuing systems (both state-independent and state-dependent); global and local balance; system stability condition and computation of steady state probabilities; performance analysis - queue occupancy, utilization, throughput, response time and idleness; Little's law; Pollaczek-Khinchin mean value formula for M/G/1/\(\infty\) systems.

Communications:

Computer Architecture:

Machine Learning and AI:

References

Preparatory Courses

ECE 4470 - Computer Networks
ECE 7428 - Computer Communication Networks
ECE 8473 - Operating Systems & Programming
ECE 8476 - Computer Communication Security
Cybersecurity PhD Qualifying Examinations

Math Requirement

Grade of B or better in one of the following courses:

- ECE 8007 - Matrix Theory
- CSC 8301 - Design & Analysis of Algorithms
- MAT 7770 - Number Theory
- MAT 8435 - Mathematical Modeling
- MAT 8650 - Abstract Algebra

Cybersecurity Discipline Specific Exam

The cybersecurity discipline specific exam is a written examination for a period not to exceed four hours in duration. The exam has the following format:

- The student is required to answer 8 questions: 4 from the cybersecurity area, and 2 each from the networks and programming areas. Some questions may span more than one subject area, for example a programming problem related to computer security or networks.

- The examination is closed book, closed notes, and no calculator or computing devices are permitted. In some cases, reference material may be provided to the student as an appendix to the exam questions.

- Sample problems are generally not provided.

- The examination questions are at the MS level, as represented by the level expected of students who pass the preparatory courses listed below. The list of topics is provided below for each subject area. The examination questions are derived from these lists.

Subject Areas and Topics

Cybersecurity

Cryptography, privacy, and authentication including secret and public key cryptography, protocols, key management, hash functions, digital signatures, and secure electronic mail. Malware and cyber threats: computer network defense; software for data protection and privacy, security information and event management, governance, risk and compliance; trusted computer systems and secure applications; identity and access management including biometrics; next generation security concepts.

Applied Programming

C or Java programming including arrays, pointers, strings, structures, dynamic memory allocation, recursion, and list processing. Unix operating system including basic commands, the file system, system calls, and shell scripts.
Computer Networks

Broad Concepts: The layered reference models: ISO OSI and TCP/IP reference model, their functions and relevance, example protocols at each layer; circuit and packet switching; connection-oriented and connectionless service; LANs, MANs, WANs; network performance in terms of latency, bandwidth, throughput and utilization and their calculation; the delay-bandwidth product.

Signal Transmission: wired and wireless transmission media - twisted pair, coax, single and multi-mode fiber, RF, satellites; communication frequency spectrum; baseband and AC signaling; modulation concepts - ASK, FSK, PSK; Nyquist’s and Shannon's theorems and data rate computation; bit encoding schemes - NRZ, NRZI, Manchester, and 4B/5B.

Channel Access and Error Control: Fragmentation, Framing using character counts, byte and bit flags with associated stuffing; error detection - parities, checksums, CRC; ARQ, stop-and-wait, sliding windows; the MAC sublayer in TCP/IP - Ethernet, hubs and learning bridges, spanning tree protocol, CSMA/CD; IEEE 802.11 protocols, CSMA/CA and the hidden and exposed terminal problems.

Routing: Routing tables for datagrams and virtual circuits, source routing, switching/routing architectures - workstations, cross-bars and self-routing (BatcherBanyan) fabrics; IPv4 addressing and subnetting; ARP and DHCP; VPNs and tunneling; Intra-domain routing - DV and OSPF; Interdomain routing - BGP.

Transport: TCP state diagram, timers and handshakes for connection setup/teardown; TCP congestion control, optimizations, wireless TCP

Other Concepts: DNS, Portmapping, NAT and Firewalls, QoS - RSVP and DiffServ models; traffic shaping and policing - leaky buckets, token buckets and combinations thereof.

Introduction to Queuing Theory: Markovian system models; the M/M/1/infty, M/M/1/N, M/M/m/infty and M/M/m/N queuing systems (both state-independent and state-dependent); global and local balance; system stability condition and computation of steady state probabilities; performance analysis - queue occupancy, utilization, throughput, response time and idleness; Little's law; Pollaczek-Khinchin mean value formula for M/G/1/infty systems.

Preparatory Courses

ECE 8476 - Cryptography & Network Security
ECE 8484 - Cybersecurity Threats and Defense
ECE 8473 - Unix and C Programming
ECE 7428 - Computer Communication Networks

References

Textbooks from the preparatory courses

Notes on network performance analysis, from Dr. Sarvesh Kulkarni: [part 1/2](#), [part 2/2](#).
PROCEDURE AND FORMAT

The Antennas, EM Fields, Microwaves, and RF Circuit Design examination will be a written examination lasting for a period not to exceed four hours in duration. The exam may consist of two periods, separated by a lunch break, or a single four hour period. It will have the following format.

- The student will be given 5 to 9 questions, and will be given the choice to answer 3 to 6 of these questions.
- The examining committee will inform the students taking the exam whether the examination will be entirely open book, or entirely closed book, at least four weeks before the examination date.
- The level of the examination questions will be at the Senior / M.S. level, as represented by the level expected of students who pass the preparatory courses listed below.
- Each problem will be derived from the list of topics listed.
- Sample problems will be provided (but no solutions).

TOPICS

Antenna Theory: Topics will include those covered in the Antenna Theory 1 with emphasis on:

- Antenna fundamentals (gain, directivity, polarization, efficiency, Friis equation, etc)
- Formulation of radiating structures using auxiliary potentials
- Dipole, wire and loop antennas
- Antennas above ground
- Antenna arrays and antenna synthesis
- Input impedance and mutual coupling effects

References:

- Chapters 2 through 7 of Antenna Theory by Balanis.
Electromagnetic Field theory: Topics will include:

- Maxwell's equations, boundary conditions, EM power and energy, wave polarization
- Basics of electrostatics and magnetostatics
- Wave equation, Green’s functions
- Wave propagation in isotropic, lossy and anisotropic media
- Reflection and transmission at dielectric interface
- Metallic and dielectric waveguides and cavity resonators

References:

- *These are at the senior/first year graduate level.*

Microwave Theory and Technique, and RF Circuit Design: Topics will include:

- Transmission line theory
- Metallic and dielectric waveguides, cavity resonators
- Microwave network analysis/scattering matrix
- Design of planar transmission lines (stripline, microstrip, coplanar)
- Matching - narrow and wide band
- Filter design - band pass, band notch, low pass, high pass (lumped element, transmission line, transmission line resonator)
- Narrowband amplifier matching using S-parameters - matching, stability, gain

References:

- *These are at the senior/first year graduate level*
- Chapters 2–6, 8 and 11 of *Microwave Engineering* by Pozar

PREPARATORY COURSES
ELECTRICAL AND COMPUTER ENGINEERING

COMMUNICATIONS AND SIGNAL PROCESSING
QUALIFYING EXAMINATION

Dr. Moeness Amin (ECE), Dr. Bijan Mobasseri (ECE), Dr. Yimin Zhang (ECE)

For general information only. Subject to change
January 2015

PROCEDURE AND FORMAT

The discipline-specific Ph.D. qualifying examination on Communications and Signal Processing will be a written examination lasting for a period not to exceed four hours in duration. The exam may consist of two periods, separated by a lunch break, or a single four hour period. It will have the following format.

- The student will be given 8 questions, and will be given the choice to answer 6 of these questions.
- The examination will be entirely open book.
- The level of the examination questions will be at the Senior / first-tier M.S. level.
- Each problem will be derived from the list of topics listed.
- Sample problems will be provided (but no solutions).

Communications

Topics will include those covered in the Communication System Engineering with emphasis on:

- Matched Filtering
- Power Spectra of Line Codes
- Digital Modulations (BPSK, QPSK, FSK, QAM), Bandwidth, and Probability of Error Analysis
- Inter-Symbol Interference and Pulse Shaping
- Coherent and Noncoherent Detections

References:

Signal Processing

Topics will include those covered in the Digital Signal Processing with emphasis on:

- z-Transform
- Sampling of Continuous-Time Signals
- Quantizations
- Discrete Fourier Series and Discrete Fourier Transform
- Frequency Analyses
- Linear Time-invariant Systems
- Digital Filter Design
References:

PREPARATORY COURSES
 ß ECE-8700 Communication System Engineering
 ß ECE-8231 Digital Signal Processing
The discipline-specific Ph.D. qualifying examination on Energy Systems will be a written examination lasting for a period not to exceed four hours in duration. The format of the examination will be as follows:

- The examination will contain a total of fifteen (15) questions equally divided among the five subject areas of Control Systems, Power Systems, Renewable Energy Systems, Electric Machines, and Power Electronics. The examinee will be required to answer six (6) of these questions from at least three (3) of the subject areas.

- The examination will be entirely open book.

- The examination questions will be at the senior undergraduate / first-tier graduate masters levels.

- A list of topics is provided below for each subject area. The examination questions will be derived from these lists.

- Sample questions will not be provided.

Control Systems

Control Systems Topics:

The topics that may be covered by the Control Systems examination questions include:

- Mathematical Modeling of Physical Systems
- Transfer Functions, Block Diagrams, and Signal Flow Graphs
- State Space Representation and Analysis
- Time-domain Specifications and Analysis
- Frequency-domain Methods of Analysis
- Root Locus Compensation
- Cascade Compensation in the Frequency Domain
- State Variable Feedback
Typical Control Systems Reference:

A typical reference in Control Systems at the undergraduate senior / first-tier graduate masters levels is the second edition of *Linear Control System Analysis & Design - Conventional and Modern* by John J. D’Azzo and Constantine H. Houpis. (The later edition of this reference is not as comprehensive as the second edition.) Certainly, there are numerous other comparable texts on this subject.

Power Systems

Power Systems Topics:

The topics that may be covered by the Power Systems examination questions include:

- Complex Power
- Per-unit Normalization
- Per-unit Analysis of Symmetrical Three-phase Systems
- Power Transformer Modeling and Analysis
- Static Power Capability Limits of Short Transmission Line
- Power Flow Control
- Power Flow Analysis
- Symmetrical Components
- Sequence Network Representations of Power System Components
- Analysis of Unbalanced Faults

Typical Power Systems Reference:

A typical reference in Power Systems at the undergraduate senior / first-tier graduate masters levels is *Electric Energy Systems Theory - An Introduction* by Olle I. Elgerd. Certainly, there are numerous other comparable texts on this subject.

Renewable Energy Systems

Renewable Energy Systems Topics:

The topics that may be covered by the Renewable Energy Systems examination questions include:

- Power in the Wind
- Wind Turbine Generators
- Wind Turbine Performance Calculations
- The Solar Resource
- Characteristics of Photovoltaic Modules
- Grid-Connected Photovoltaic System Design
- Stand-Alone Photovoltaic System Design
- Fuel Cells
- Batteries
- Renewable Energy Economics
Good Renewable Energy Systems Reference:

Renewable and Efficient Electric Power Systems by Gilbert M. Masters.

Electric Machines

Electric Machines Topics:

The topics that may be covered by the Electric Machines examination questions include:
- Magnetic Circuits and Magnetic Materials
- Transformers
- Electromechanical Energy Conversion Principles
- Synchronous Machines
- Polyphase Induction Machines
- DC Machines
- Speed and Torque Control of Electric Machines

Typical Electric Machines Reference:

A typical reference in Electric Machines at the undergraduate senior / first-tier graduate masters levels is *Electric Machinery* by A.E. Fitzgerald and Charles Kingsley, Jr. Certainly, there are numerous other comparable texts on this subject.

Power Electronics

Power Electronics Topics:

The topics that may be covered by the Power Electronics examination questions include:
- Power Semiconductor Devices
- Line-frequency Diode Rectifiers
- Line-frequency Phase-controlled Rectifiers and Inverters
- dc-dc Switch-mode Converters
- Switch-mode dc-ac Inverters
- Resonant Converters

Typical Power Electronics Reference:

A typical reference in Power Electronics at the undergraduate senior / first-tier graduate masters levels is *Power Electronics: Converters, Applications, and Design* by Ned Mohan, Tore M. Undeland, and William P. Robbins. Certainly, there are numerous other comparable texts on this subject.
Preparatory Courses

The following courses or their equivalents are necessary to prepare for this examination.

ECE 7800 – Renewable Energy Systems
ECE 8320 - Control Systems Engineering
ECE 8580 - Power Electronics
ECE 8800 - Electric Machines
ECE 8810 - Power System Modeling
Mechanical Engineering Department

Ph.D. Math Qualifying Examination Guidelines

August 2014
General Information

- This exam is usually held twice yearly, once in spring and once in fall.

- It is a test of proficiency in engineering math at both the undergraduate and graduate level.

- There are two parts, A and B, to the exam. Part A is a test of undergraduate engineering math while part B is devoted to graduate level engineering math topics. The topic areas for each part are defined in the SYLLABUS section.

- Each part will be comprised of FIVE problems. Examinees are required to solve THREE of FIVE problems in each part.

- To pass the qualifying exam, students will need to obtain a minimum of 70% in part A and a minimum of 70% in part B.

- Reference textbook titles are provided in the REFERENCES section.

- Sample problems are provided in the SAMPLE PROBLEMS section.

- The time duration of the exam is FOUR hours.

- The entire exam is closed book.

- The use of calculators is not permitted.

- The formulae pages provided in the exam may be used to solve the problems. These formulae are provided in the FORMULAE section.

- Questions related to the exam can be directed to the faculty on the ME PhD Math QE committee (see last page for faculty).
SYLLABUS

Topic areas for the Mechanical Engineering PhD Math Qualifying Exam are:

• Part A
 - Linear Algebra (Vectors in Euclidian space, Linear independence of vectors, Matrix rank and its properties, Determinants, Eigenvalues and eigenvectors)
 - Ordinary Differential Equations (Linear first and second order ODEs; Variation of parameters; simultaneous ODEs; nonlinear first-order ODEs)
 - Fourier Series (Sine and Cosine series; Complete Fourier Series)
 - Laplace Transforms (Using Laplace transforms to solve ODEs)
 - Multivariable Calculus (Parametric equations; polar, cylindrical, and spherical coordinates; vectors and the geometry of space; vector functions (derivatives, integrals, curvature, etc.); partial derivatives; multiple integration and its applications)

• Part B
 - Linear Algebra (Matrix transformations, Matrix decompositions, Sign definite matrices and their properties, Various problems on proving matrix properties, Engineering applications of linear algebra)
 - Series Solutions for ODEs (Power series solutions, Singular points, Method of Frobenius)
 - Homogeneous Boundary Value Problems (Sturm-Liouville problems, Characteristic values and functions, Orthogonality)
 - Bessel and Legendre Functions (Bessel’s Equation, Bessel functions, Differential equations reducible to Bessel’s equation, Fourier-Bessel Series, Legendre’s Equation, Legendre series and polynomials)
 - Partial Differential Equations (Separation of variables, Laplace’s equation, Heat flow equation, Wave equation, Applications to engineering problems)
 - Vector Calculus (Line Integrals, Surface integrals, volume integrals, Gauss Divergence theorem, Stokes’ theorem, Green’s theorems)
REFERENCES

SAMPLE PROBLEMS

(Note: These are not in any particular order, nor are they classified as Part A or Part B problems. Solutions are not being provided. Students are urged to solve these problems by themselves before approaching the ME Math QE committee faculty for assistance.)

1. Obtain the general solution to the following ordinary differential equation

\[\frac{dy}{dx} + xy = e^{\left(\frac{x^2}{2}\right)} y^2 \]

2. A complex valued matrix \(A \in \mathbb{C}^{n \times n} \) is called \textit{positive definite} \((A > 0) \) if

\[A^* = A, \]
\[x^* Ax > 0, \quad x \in \mathbb{C}^n, \quad x \neq 0, \]

where \(A^* \) and \(x^* \) are complex conjugate transposes of \(A \) and \(x \), respectively. Show that if \(A > 0 \), then

- All eigenvalues of \(A \) are real,
- All eigenvalues of \(A \) are positive.

3. Derive the Fourier series expansion for \(f(t) \)

\[f(t) = \begin{cases} 0 & -\pi < t < 0 \\ \sin t & 0 < t < \pi \end{cases} \]

4. Use the Laplace transform method to solve for \(y(t) \) given the following simultaneous ordinary differential equations if \(y(0) = 1 \) and \(z(0) = -1 \)

\[\frac{dy}{dt} + 2y + 6 \int_0^t z dt = -2u(t) \]
\[\frac{dy}{dt} + \frac{dz}{dt} + z = 0 \]

Here \(u(t) \) is the unit step function.

5. Obtain a power series solution for the following ODE, valid near \(x=0 \).

\[x^2 \frac{d^2 y}{dx^2} + 6x \frac{dy}{dx} + (x^2 + 6)y = 0 \]
6. Consider the homogeneous boundary value (Sturm-Liouville) problem.
\[\frac{d^2y}{dx^2} + \lambda y = 0, \quad \text{with boundary conditions } \frac{dy}{dx} = 0 \quad \text{at} \quad x = 0, \quad \frac{dy}{dx} = 0 \quad \text{at} \quad x = \pi \]
(a) Obtain the characteristic functions for the problem.
(b) Expand the function \(f(x) = 1 \) as a series of the characteristic functions.

7. Determine the value of the surface integral of the vector function \(\vec{F} \).
\[\vec{F} = xy\hat{i} + xz\hat{j} + (1 - z - yz)\hat{k} \]
The surface \(S \) is the closed surface composed of the portion of the paraboloid \(z = 1 - x^2 - y^2 \) for which \(z \geq 0 \) and the circular disk \(x^2 + y^2 \leq 1, \ z = 0 \). (The surface integral of the vector function \(\vec{F} \) is the integral \(\int_S \vec{F} \cdot \hat{n} \ dS \) where \(\hat{n} \) is the unit normal to the surface \(S \).)

8. Assume a thin pole (the cross section area is infinitely small) has a length of \(L \). The two ends of this pole are located at \(x = 0 \) and \(x = L \), along the x axis. The lateral surface of this pole is perfectly insulated from heat transfer. At \(x = 0 \), the temperature is zero, \(T(x = 0) = 0 \). At the other end, \(x = L \), the heat exchanges with the air through natural convection (the heat transfer coefficient is \(h \)). The air temperature is 10. The initial temperature distribution of the pole, at time \(t = 0 \), is \(\phi(x) \). The governing partial differential equation for heat transfer in the pole is:
\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}, \quad 0 < x < L, \quad 0 < t \]
where \(\alpha \) is the thermal diffusivity of the pole material. The boundary condition at \(x = L \) can be expressed as:
\[k \frac{\partial T}{\partial x (x=L,t)} = -h(T_{(x=L,t)} - 10) \]
where \(k \) is the thermal conductivity of the pole material.
(a) Obtain an expression for the temperature distribution of this pole as a function of time \(t \) and position \(x \).
(b) What kind of initial condition will result in only one exact solution?
9. A circular thin plate has a radius of 1. The thickness of the plate is infinitely small and its top and bottom surfaces are insulated. Its perimeter temperature is 10 ($T(r = 1) = 10$). Initially, the temperature distribution of the plate is $T(r, t = 0) = 1 - r^2$. The governing partial differential equation for heat transfer in the plate is:

$$\frac{\partial T}{\partial t} = \alpha \left\{ \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right\}$$

where α is the thermal diffusivity of the plate material.

(a) Determine the temperature distribution in the plate as a function of time (t) and radial location (r).

(b) What kind of initial condition will result in only one exact solution?

(Note: Your solution will involve Bessel functions.)
FORMULAE

Elementary Trigonometry:

\[
\sin (\theta_1 \pm \theta_2) = \sin \theta_1 \cos \theta_2 \pm \cos \theta_1 \sin \theta_2 \\
\cos (\theta_1 \pm \theta_2) = \cos \theta_1 \cos \theta_2 \mp \sin \theta_1 \sin \theta_2 \\
\sin(-\alpha) = -\sin(\alpha) \\
\cos(-\alpha) = +\cos(\alpha)
\]

Integrations:

\[
\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)
\]
\[
\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)
\]
\[
\int x^2 \cos(ax) \, dx = \frac{2x}{a^2} \cos(ax) + \frac{a^2 x^2 - 2}{a^3} \sin(ax)
\]
\[
\int x^2 \sin(ax) \, dx = \frac{2x}{a^2} \sin(ax) - \frac{a^2 x^2 - 2}{a^3} \cos(ax)
\]
\[
\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{\cos(ax) \sin(ax)}{2a}
\]
\[
\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{\cos(ax) \sin(ax)}{2a}
\]

Euler’s formula:

\[e^{i\theta} = \cos \theta + i \sin \theta\]

Divergence theorem:

\[
\iint_S \vec{F} \cdot \hat{n} \, dS = \iiint_V \nabla \cdot \vec{F} \, dV,
\]
where \(\hat{n}\) is normal to \(S\) which bounds the volume \(V\).
Bessel functions:

\[J_{n+1}(z) = \frac{2n}{z} J_n(z) - J_{n-1}(z) \]

\[\frac{d}{dz} [J_n(z)] = J_{n-1}(z) - \frac{n}{z} J_n(z) \]

\[\frac{d}{dz} [z^n J_n(z)] = z^n J_{n-1}(z) \]

\[\frac{d}{dz} [z^{-n} J_n(z)] = -z^{-n} J_{n+1}(z) \]

Hankel functions:

\[H_p^{(1)}(x) = J_p(x) + iY_p(x) \]

\[H_p^{(2)}(x) = J_p(x) - iY_p(x) \]

Solution in terms of Bessel Function:

The solution to

\[x^2 y'' + x(a + 2bx^r)y' + \left[c + dx^{2s} - b(1-a-r)x^r + b^2 x^{2r} \right] y = 0 \]

is

\[y = x^{\frac{1-a}{2}} e^{-\frac{bx^r}{s}} Z_p \left(\frac{\sqrt{d}}{s} x^s \right) \]

where,

\[p = \frac{1}{s} \sqrt{\left(\frac{1-a}{2} \right)^2 - c} \]

and, \(Z_p \) consists of \(J_p \) and \(J_{-p} \) (or \(J_p \) and \(Y_p \)) if \(\sqrt{d}/s \) is real, and \(I_p \) and \(I_{-p} \) (or \(I_p \) and \(K_p \)) otherwise. Recall that if \(p \) is zero or a positive integer, the latter situation applies in each case.
<table>
<thead>
<tr>
<th>$f(t) = \mathcal{L}^{-1}{F(s)}$</th>
<th>$F(s) = \mathcal{L}{f(t)}$</th>
<th>$f(t) = \mathcal{L}^{-1}{F(s)}$</th>
<th>$F(s) = \mathcal{L}{f(t)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>$\frac{1}{s}$</td>
<td>2. e^{at}</td>
<td>$\frac{1}{s-a}$</td>
</tr>
<tr>
<td>3. $t^n, \ n = 1, 2, 3, \ldots$</td>
<td>$\frac{n!}{s^{n+1}}$</td>
<td>4. $t^p, \ p > -1$</td>
<td>$\frac{\Gamma(p+1)}{s^{p+1}}$</td>
</tr>
<tr>
<td>5. \sqrt{t}</td>
<td>$\frac{\sqrt{\pi}}{2s^{3/2}}$</td>
<td>6. $t^{n-1}, \ n = 1, 2, 3, \ldots$</td>
<td>$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1) \sqrt{\pi}}{2^n s^{n-1}}$</td>
</tr>
<tr>
<td>7. $\sin(at)$</td>
<td>$\frac{a}{s^2 + a^2}$</td>
<td>8. $\cos(at)$</td>
<td>$\frac{s^2 - a^2}{s^2 + a^2}$</td>
</tr>
<tr>
<td>9. $t \sin(at)$</td>
<td>$\frac{2as}{(s^2 + a^2)^2}$</td>
<td>10. $t \cos(at)$</td>
<td>$\frac{s^2 - a^2}{(s^2 + a^2)^2}$</td>
</tr>
<tr>
<td>11. $\sin(at) - at \cos(at)$</td>
<td>$\frac{2a^3}{(s^2 + a^2)^3}$</td>
<td>12. $\sin(at) + at \cos(at)$</td>
<td>$\frac{2as^2}{(s^2 + a^2)^2}$</td>
</tr>
<tr>
<td>13. $\cos(at) - at \sin(at)$</td>
<td>$\frac{s(s^2 - a^2)}{(s^2 + a^2)^3}$</td>
<td>14. $\cos(at) + at \sin(at)$</td>
<td>$\frac{s(s^2 + 3a^2)}{(s^2 + a^2)^3}$</td>
</tr>
<tr>
<td>15. $\sin(at + b)$</td>
<td>$\frac{s \sin(b) + a \cos(b)}{s^2 + a^2}$</td>
<td>16. $\cos(at + b)$</td>
<td>$\frac{s \cos(b) - a \sin(b)}{s^2 + a^2}$</td>
</tr>
<tr>
<td>17. $\sinh(at)$</td>
<td>$\frac{a}{s^2 - a^2}$</td>
<td>18. $\cosh(at)$</td>
<td>$\frac{s}{s^2 - a^2}$</td>
</tr>
<tr>
<td>19. $e^{bt} \sin(bt)$</td>
<td>$\frac{b}{(s-a)^2 + b^2}$</td>
<td>20. $e^{bt} \cos(bt)$</td>
<td>$\frac{s-a}{(s-a)^2 + b^2}$</td>
</tr>
<tr>
<td>21. $e^{bt} \sinh(bt)$</td>
<td>$\frac{b}{(s-a)^2 - b^2}$</td>
<td>22. $e^{bt} \cosh(bt)$</td>
<td>$\frac{s-a}{(s-a)^2 - b^2}$</td>
</tr>
<tr>
<td>23. $t^n e^{ct}, \ n = 1, 2, 3, \ldots$</td>
<td>$\frac{n!}{(s-a)^{n+1}}$</td>
<td>24. $f(ct)$</td>
<td>$\frac{1}{c} F\left(\frac{s}{c}\right)$</td>
</tr>
<tr>
<td>25. $u_c(t) = u(t-c)$</td>
<td>$\frac{e^{ct}}{s}$</td>
<td>26. $\delta(t-c)$</td>
<td>e^{-ct}</td>
</tr>
<tr>
<td>27. $u_c(t)f(t-c)$</td>
<td>$e^{-ct} F(s)$</td>
<td>28. $u_c(t)g(t)$</td>
<td>$e^{-ct} \mathcal{L}{g(t+c)}$</td>
</tr>
<tr>
<td>29. $e^{ct}f(t)$</td>
<td>$F(s-c)$</td>
<td>30. $t^n f(t), \ n = 1, 2, 3, \ldots$</td>
<td>$(-1)^n F^{(n)}(s)$</td>
</tr>
<tr>
<td>31. $\frac{1}{t} f(t)$</td>
<td>$\int_0^\infty F(u) du$</td>
<td>32. $\int_0^t f(v) dv$</td>
<td>$\frac{F(s)}{s}$</td>
</tr>
<tr>
<td>33. $\int_0^t f(t-\tau) g(\tau) d\tau$</td>
<td>$F(s) G(s)$</td>
<td>34. $f(t+T) = f(t)$</td>
<td>$\int_0^T e^{-st} f(t) dt$</td>
</tr>
<tr>
<td>35. $f'(t)$</td>
<td>$sF(s) - f(0)$</td>
<td>36. $f''(t)$</td>
<td>$s^2 F(s) - sf(0) - f''(0)$</td>
</tr>
<tr>
<td>37. $f^{(n)}(t)$</td>
<td>$s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \ldots - sf^{(n-2)}(0) - f^{(n-1)}(0)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ME PhD Math QE Examination Committee

- Hashem Ashrafiuon
- Calvin Li
- Sergey Nersesov
- Sridhar Santhanam
The College of Engineering Qualifying Examination in the control systems area will be a written four-hour closed book examination where equations will be provided as needed.

EXAM FORMAT
The exam will have six questions from six topics selected from the list of topics provided below. The six topics will be selected by members of Center for Nonlinear Dynamics and Control (CENDAC) after consultation with the student’s advisor. Students work will be evaluated based on best 4 questions answered out of 6.

TOPICS

EGR 8301 - Control Systems Engineering (or equivalent): Feedback control system design in the frequency and time domains: Root Locus analysis, Bode and Nyquist plots; State-Space formulation: Controllability; Observable design; Multivariable control.

EGR 8302 - Digital Control (or equivalent): Introduction to digital control analysis & design techniques applied to discrete-time & sampled continuous-time systems. Sampling, difference equations, the Z-transform & modified Z-transform, discrete transfer function & state-space models, discrete-time regulator & observer design, stability of discrete-time systems, discrete linear quadratic regulator & linear quadratic Gaussian formulation.

EGR 8304 - Nonlinear Control (or equivalent): Advanced treatment of nonlinear dynamical systems and control theory using modern techniques with applications. Topics include: Lyapunov stability theory, partial stability finite-time stability and control design, control Lyapunov functions, nonlinear optimal control, sliding mode control, and adaptive control.

EGR 8305 - System Identification (or equivalent): Introduction to system identification techniques for linear systems. Topics include: non-parametric time- and frequency-domain methods, parametric model structures, noise models, parametric estimation methods, recursive estimation, bias and data pre-filtering, validation methods.

EGR 8306 - Nonlinear Dynamics (or equivalent): Introduction to nonlinear dynamic analysis using analytical, graphical & numerical techniques. Linear system theory, the nonlinear pendulum, stability concepts, bifurcation theory, self-excited oscillations, overview of asymptotic methods, Floquet theory, Poincare maps, & chaos.
EGR 8308 - Feedforward Control (or equivalent): Introduction to feedforward control techniques with an emphasis on model-based methods. Design of feedforward inputs for linear systems, nonlinear systems, nonminimum phase systems, and systems with actuator redundancy; integration of feedforward and feedback; iterative control; dealing with plant uncertainty.

ADDITIONAL TOPICS
In addition, other topics may be included based on faculty advisor request and subject to approval by members of CENDAC. These topics include but are not limited to:

- Optimal Control
- System Dynamics
- Process Control
- Undergraduate level control
- Autonomous Control
The Dynamic Systems and Control examination will be a written four-hour closed book examination where equations will be provided as needed.

EXAM FORMAT

- Six questions will be grouped into two groups of A and B.
- Group A consists of three questions at the undergraduate level. One question will be from Vibration, one from System Dynamics, and one from basic undergraduate level Control. The student must answer two of the three questions.
- Group B consists of three questions at the M.S. level. One question will be from Vibration, one from Advanced Dynamics, and one from graduate level Control. The student must answer two of the three questions.

TOPICS

Group A

Vibration: Free and forced vibration of one degree-of-freedom mechanical systems. Response to harmonic excitation, general excitation, and transient response. Transfer function analysis and frequency response. Two degree-of-freedom systems, modal analysis.

Course Number: ME 3102

System Dynamics: Modelling of mechanical, electromechanical, fluid, and thermal systems; Block diagram and transfer function analysis; Time domain analysis and specifications, stability analysis.

Course Number: ME 3103

Control: Feedback control system design in the frequency domains, root locus control design, Bode and Nyquist plots.

Course Number: ME 3103

Group B

Advanced Dynamics: Particle kinematics and dynamics; rigid body kinematics and dynamics; kinematic constraints and Lagrangian equations of motion.
Course Number: ME 7205

Vibration: Single and multi-degree-of-freedom systems, eigenvalue/vector problem, forced response, continuous systems.

Course Number: ME 8207

Control: Feedback control system design in the frequency and time domains; State-Space formulation; Controllability; Observable design; Multivariable control.

Course Number: EGR8301
The objective of the discipline-specific Ph.D. qualifying examination in Mechanics/Materials is to determine the proficiency and the readiness of the student to undertake rigorous research in the areas of mechanics and/or materials science. Students will be tested on their knowledge in these subject areas. The specific graduate level topics for testing will be determined by the student’s research supervisor after consultation with the student. It is imperative that students consult with their research supervisor prior to officially indicating their desire to take this qualifying exam.

EXAM TOPICS

Ph.D. candidates should, in consultation with their research supervisor, undertake an appropriate plan of study in preparation for the qualifying exam and for their research. The plan of study should include multiple courses from the following:

1) Continuum Mechanics (ME 7002)
2) Introduction to FEM (ME 7040)
3) Nano/Micro Scale Behavior of Materials (ME 7250)
4) Mechanical Behavior of Materials (ME 7260)
5) Reinforced Composite Materials (ME 7501)
6) Fiber Composites (ME 7502)
7) Biomechanics of Hard Tissues (ME 7550)
8) Biomechanics of Soft Tissues (ME 7560)
9) Thermoelasticity (ME 8140)
10) Elasticity (ME 8200)
11) Applied Fracture Mechanics (ME 8350)

Content for the qualifying exam will be drawn from three graduate level courses selected from the above.

EXAM FORMAT

- For each of the three courses, two problems will be given, i.e., totally SIX questions will be given.
- FOUR of the SIX questions must be answered. Furthermore, students MUST answer AT LEAST ONE problem from EACH course.
- Exam will be closed-book. However, students will be provided with an appropriate packet of equations to use during the exam. The packet will be made available to the students prior to the exam.
- A calculator will be permitted. No other computational device will be allowed.
- The exam will last for a period not to exceed FOUR hours in duration.
- The passing grade for the exam is 70%.

QUALIFYING EXAM COMMITTEE

Gang Feng, Associate Professor
Bo Li, Assistant Professor
Ani Ural, Associate Professor
Sridhar Santhanam, Professor
PROCEDURE AND FORMAT
The Thermal-Fluid Science examination will include both a written examination and an oral examination lasting for a period not to exceed five hours in duration (four hours for the written exam and one hour for the oral exam). Altogether four out of the five topics listed below will be tested in the Thermal-Fluids Qualifying exam. The format is as follows:

Written Examination
• The student will be given five questions, one on each of the topics listed below.
• The written exam lasts for a period not to exceed four hours.
• The student may choose to answer any three (3) of the five (5) questions.
• The level of the examination questions will be at the M.S. level (except for the Radiation question, which will be at an advanced undergraduate level).
• Sample problems will be provided (but no solutions).
• The examination will be closed book and notes. Relevant lengthy equations will be provided for reference in a Thermal/Science Equation Reference Guide prior to the examination.
• A calculator may be required for one or more of the questions. Any calculator with internet connection is NOT allowed. Cell phones are NOT allowed to be used as calculators and cannot, under any circumstances, be taken into the examination room.

Oral Examination
• The oral exam will be held approximately two weeks after the written exam, subject to faculty availability.
• The oral examination committee will be comprised of three of the Thermal fluids faculty, including the student’s advisor. The choice of the members of this examining committee will be made by the faculty members.
• The oral exam will cover two (2) out of the five (5) topics listed below, and will be assessed at the advanced undergraduate and M.S. levels and may include questions based on the written exam.
• The two topics of the oral exam will be decided after the written exam is given. The student (examinee) will choose one (1) of the five (5) topics listed below, and that topic must be one that was not chosen in the written exam. The other topic of the oral exam will be chosen by the oral exam committee from the three topics tested in the written exam.
• The oral committee will confirm with the student the two examination topics one week in advance of the oral exam.
TOPICS

Fluid Dynamics: Fundamentals of fluid mechanics; conservation of mass, momentum, energy; integral or control volume formulations; incompressible inviscid and viscous flows; Navier-Stokes equations; laminar and turbulent boundary layers; laminar and turbulent internal flows; laminar and turbulent jets and wakes [References 1-2, plus 3 for general undergraduate topics].

Thermodynamics: Questions will focus on classical thermodynamics, not statistical thermodynamics; Energy balances in closed and open systems, steady and non-steady; second law applications and derivations of limiting trends in systems; state principles and equations of state; applications to cycles [Reference 4, plus 5 & 6 for general undergraduate topics].

Convection: Fundamental mechanisms; laminar and turbulent regimes; forced and free convection; internal and external flows; closed-form solutions; boundary layer approximations; scaling; asymptotic limits of high and low Prandtl numbers [Reference 7, plus 10 for general undergraduate topics].

Conduction: Fundamentals of heat conduction; steady, 1-d conduction; steady, multi-dimensional conduction; fin performance and optimization; transient conduction with steady boundary conditions; transient conduction with time dependent boundary conditions [Reference 8 & 9, plus 10 for general undergraduate topics].

Radiation: Definitions of radiative intensity, properties and fluxes, characteristics of blackbody radiation, basic laws (Planck’s Law, Wien’s Law, the Stefan-Boltzmann Law, Kirchhoff’s Law), view factors, radiative exchange between diffuse, gray surfaces in an enclosure. [Reference 10, Chap 12, 13].

In addition to familiarity with the subjects listed above, the candidate is expected to be able to use thermal-fluids theory and basic physical principles in application. Familiarity with the course content of ME 7103 (Advanced Engineering Thermodynamics), ME 8100 (Fundamentals of Conduction and Radiation Heat Transfer), ME 8120 (Convection Heat Transfer), and ME 8103 (Advanced Fluid Mechanics) is recommended. References are given as suggestions to indicate the level of the material covered. Selected undergraduate references are given as general references, not to indicate level of treatment (except in the case of the Radiation topic).

REFERENCES

1. Deen, W. M., Analysis of Transport Phenomena, Oxford University Press (any edition)

Grading:
1. Written and oral exams will be graded separately. The passing score is 70% and above in each of them.
2. If a student fails in either the written or the oral exam, a partial passing score will be given. The student will have one chance to retake the Thermal Fluids Science Qualifying exam, but only the one that he or she failed.
A. SUSTAINABLE ENGINEERING MATHEMATICS PHD QUALIFICATION REQUIREMENTS

To fulfill the Mathematics PhD Qualification Requirements, candidates must successfully complete one of the currently offered graduate level mathematics courses listed below with a grade of B+ or better:

1. MAT 7404 - Statistical Methods I
 Description: Data summarization and display, distributions; binomial, Poisson, normal, t, chi-square and F, estimation, hypothesis testing, linear regression, correlation, statistical software packages.
 Credit Hours: 3. Offered: Each fall

or

2. BIO 7805 - Biostatistics & Exper. Design
 Description: Conceptualization of experimental design, hypothesis testing, execution of statistical analyses, expression of statistical results, and effective graphical presentation of quantitative data. Includes a written exercise emulating peer-reviewed journal publication.
 Credit Hours: 4. Offered: Each spring and summer.

or

3. Another graduate level math course e.g. modeling or optimization may be substituted with the approval of the advisor and coadvisor.

B. SUSTAINABLE ENGINEERING QUALIFYING EXAMINATION

PROCEDURE AND FORMAT

The discipline specific PhD qualifying examination on Sustainable Engineering will be a combination of a written and oral examination lasting for a period not to exceed a total of 4 hours in duration, 3 hours for the written and 1 hour for the oral. It will have the following format.

- The student will be given 5 questions and will be given the choice to answer 3 of these questions. One of the selected questions must be a designated question relating to engineering discipline specific topics.
- The examination will be entirely open book/notes.
- The level of the examination questions will be at the MS level.
- Each question will be derived from the list of topics listed below
The oral portion of the exam will be an open period whereby the student will be presented with a question posed by the examining committee.

TOPICS

- **Sustainable Materials & Design**: Embodied Energy in Materials, Sustainable Material Alternatives incl. renewably sourced and sustainable end of life, Benefits/Issues of Today's Materials, Design Principles for Material Solutions that build in sustainability from the start (reduced material intensity, biomimicry), sustainable packaging

- **Life Cycle Assessment (LCA) & Impact Assessment**: Goals/Scope/Challenges, LCA Inventory Analysis, Software, Unit Process Definition, Cutoff Criteria, LCA Impact Assessment, Traci methodology, Definitions, LCA Integration—Recommended solutions, Incorporation of Social, Technical, Economic, Political

- **Climate Change**: Energy Transformation, Planetary Boundaries, Whole Systems Thinking, LCAs

- **Social/Economic Aspects**: Stakeholder Engagement, Sustainable Consumption, Integrated Reporting/Measurement, Ecosystem Services, Appropriate Technology for Developing Countries, Public/Private Partnerships-NGOs, Role of Gov’t Policy and Control

- **Sustainable Supply Chain**: Supply Chain Process (Procurement, Manufacturing, Delivery, Distribution, Disposal); Applying sustainability principles to each process step; Green product design; transparency; reporting; supplier management and partnership; stakeholder engagement; risk management/resilience; eco-efficiency; sustainable packaging; extended producer responsibility; leadership practices.

- **Core Engineering (Track) Competencies**: Water hydrology; Environmental and Industrial Process Control systems; Building and transportation design and modeling; Finite Element Analysis; Polymer science and engineering; Material properties; Thermal energy management; Hydraulics and Fluids; Energy conversion and modeling.

REFERENCES

Lowry, Amory B. *Reinventing Fire* Chelsea Green Publishing Co. VT 2011

United Nations Global Compact, BSR; Supply Chain Sustainability -A Practical Guide for Continuous Improvement, 2010

MIT/Sloan Management Review, “Greening” Transportation in the Supply Chain, Winter 2010

PREPARATORY COURSES

CORE:

EGR7110: Introduction to Sustainability and Climate Change
EGR7113: Sustainable Materials and Design
EGR7111: Life Cycle Assessment and Impact
EGR7112: Social and Economic Drivers

TRACK:

As appropriate based on chosen track. See:
http://www1.villanova.edu/villanova/engineering/grad/masters/sustainable.html#tracks