
1

A General Tutorial on MATLAB

Interactive MATLAB Tutorial available in the following website

http://www.mathworks.com/academia/student_center/tutorials/register.html

1. The best teacher you can ask for help: the help function

help XYZ = help on function “XYZ”

Example: get the roots of

function: roots

help roots

Explanation listed as follows

Polynomial:

MATLAB: []

Sys = [1 2 1]; %(don’t show the result in the command line – the role of semicolon)

Sys = [1 2 1] %(show the result in the command line)

roots(Sys)

The answer is -1, -1

2. Algebra operation

 MATLAB can be used as a scientific calculator

 Scalar

Example: 1, and -2

 Vector: a one-dimensional array of multiple elements

Example: v = [1, 2, 3, 4, 5], or [1 2 3 4 5], or [1:1:5], or [1:5]

 The transpose of v: v
T
 = [1, 2, 3, 4, 5] ', or [1 2 3 4 5] ', or [1:1:5], or [1:5] '

 ones(3,1)

 ones(1,3)

 zeros(3,1)

 zeros(1,3)

 Matrix: a rectangular array of numbers, symbols or expressions

M = [1, 2, 3; 4, 5, 6; 7, 8, 9], or M = [1 2 3; 4 5 6; 7 8 9], or

M(1,1:3) = [1, 2, 3], M(2,1:3)= [4, 5, 6], M(3,1:3) = [7, 8, 9]

The transpose of M: (M
T
)i,j = (M)j,i

M
T
 = [1, 2, 3; 4, 5, 6; 7, 8, 9]'

ones(3,4)

ones(4,3)

eye(3)

zeros(4,4)

zeros(5,4)

2.1 Unary operation:

2.1.1 -: unary minus

http://www.mathworks.com/academia/student_center/tutorials/register.html

2

Example: we can get the opposite of 2 by typing

-2

2.1.2 ^: power

Example: 20 to the power of twenty 20, i.e., 20
20

20^20

The answer is 1.0486e+026. MATLAB, however, uses “e” to represent “10^” for

scientific notation

2.1.3 exp(x): the exponential of x

exp(1)

The answer is 2.7183.

2.1.4 log(x) for natural logarithm, and log10 for common (base 10) logarithm

Example

log(2.7183), log10(10^5)

The answers are 1 and 5, respectively

Note: all the above operations are applicable to vectors and matrixes. In this case, the

operation is applied to each element in the vectors or matrixes.

2.2 Double element operation

2.2.1 +: plus

Example

 v1 = [1:2:5];

 v2 = [2:2:6];

 v1 + v2

The answer is [3 7 11];

2.2.2 -: minus

Example

 v1 = [1:2:5];

 v2 = [2:2:6];

 v1 - v2

The answer is [-1 -1 -1];

2.2.3 *: Matrix multiply, i.e. M*N with , and ,

Example

[

] [

]

M = [1 2; 2 1; 3 2];

N = [4 6 8; 5 7 9];

M*N

The answer is:

3

[

]

2.2.4 ^: Square matrix power, i.e. M^2

Example

[

]

 M = [1 2; 2 1];

 M^2

The answer is:

[

]

2.2.5 .*: Array multiply

v = v1.*v2, v(i) = v1(i)*v2(i)

Example

 [

] [

],

v1 = [1 2 3]';

v2 = [-1 1 -1]';

v1.*v2

The answer is:

[

]

2.2.6 .^: Array power

v =
 , v(i) = v1(i) v1(i) v1(i) (totally n times)

 [

],

v1 = [1 2 3]';

v1.^3

The answer is:

[

]

2.2.7 inv: the inverse of the square matrix X

A square matrix is singular if and only if its determinant is 0.

The inv is applied to any nonsingular or invertible matrix.

 Example

 [

],

M = [2 0; 1 1];

http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/Determinant

4

inv(M)

eye(2)/M

The answer is

 [

]

2.2.8 ./ : Right array divide

v = v1./v2, v(i) = v1(i)/v2(i)

Example

 [

] [

],

v1 = [1 2 3]';

v2 = [-1 1 -1]';

v1./v2

The answer is:

[

]

2.2.9 the size of a vector or matrix

The length of a vector, i.e., the number of elements in the vector: length(v)

Example

v = [0 1 3];

length(v)

The size of a matrix, i.e., the number of columns and rows in the matrix: size(M)

Example

What is the size of matrix [

],

M = [2 3; 3 4; 4 5];

size(M)

The answer is: 3, 2, meaning three rows and two columns.

3. Automating analysis with functions and scripts

3.1 saving all the commands into a *.m document

The procedure for building a *.m document

 Run MATLAB

 File -> New -> Script

 Input the commands into the file

 Save the file as a Document_name.m document

 Type Document_name in the command line to run the program

Example: to calculate ∑

 Input the following the commands into a document

5

clc % Clear command window.
clear % Removes all variables from the workspace.
v = [1:2:19];
v_3 = v.^3; % name criteria for MATLAB
sum_v_3 = sum(v_3)

 save the document as example_sum.m

 run example_sum in the command line

Tips: 1) add % for comments

 2) use Ctrl + r to change an executable line to a comment line

 2) use Ctrl + t to change the comment line to an executable line

3.2 writing a function with specified inputs

The procedure for building a function document

 Run MATLAB

 File -> New -> Function. And the following template pops up.

function [output_args] = Untitled3(input_args)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here

End

 Assign the name, i.e., Untitled3, for the function. The name of the function

should be the same as the name of the document

 Assign the inputs (i.e., input_args) and outputs (i.e., output_args) of the

function. It is possible that there are multiple inputs and multiple outputs in the

defined function

 To run the function, assign the inputs and type the function name in the command

line

Example: to calculate ∑

 Define a function to calculate (2i-1)
3

function y = cubic_i(x)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
y = (2*x -1)^3;
end

 On the basis of the function cubic_i, calculate the output of this function for each

input i, and then sum up all the outputs from the function
clc
clear
y_1 = cubic_i (1);
y_2 = cubic_i (2);
y_3 = cubic_i (3);
y_4 = cubic_i (4);
y_5 = cubic_i (5);
y_6 = cubic_i (6);
y_7 = cubic_i (7);

6

y_8 = cubic_i (8);
y_9 = cubic_i (9);
y_10 = cubic_i (10);
y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_10

Any better way? Repeated operations => circulation

4. Flow Control and Logical Operation

4.1 Flow control: we mainly focus on for loops and while loops in this training

4.1.1 for loops
for <variable> = <expression>

<statement>

...

<statement>

end

Example: to calculate ∑

Sum_i = 0;
for i = 1:10
 Sum_i = Sum_i + cubic_i(i);
end
Sum_i

Note: 1) pay attention to the indentation for different loops

 2) loop operation is slower than the vector operation

4.1.2 while loops

while <logical expression>

<statement>

...

<statement>

end

Example: to calculate ∑

Sum_i = 0;
i = 1;
while i <= 10
 Sum_i = Sum_i + cubic_i(i);
 i = i + 1;
end
Sum_i

4.2 Logic operation

4.2.1 Relational operators.

 == - Equal

Example:

1==2

The answer is false (i.e., 0)

7

1==1

The answer is true (i.e., 1)

 ~= - Not equal

 < - Less than

 > - Greater than

 <= - Less than or equal

 >= - Greater than or equal

 strcmp(a, b) Compares strings a and b.
Example:

strcmp('a','a')

strcmp('a','b')

4.2.2 Logical operators

 & - Element-wise logical AND
Example:

1 & 0 = 0

1 & 1 = 1

 | - Element-wise logical OR
Example:

1 | 0 = 1

0 & 0 = 0

1 | 1 = 1

 ~ - Logical NOT
Example:

~ 0 = 1

~ 1 = 0

4.2. 3 if … end
if <logical expression>

<statement>

...

<statement>

end

Example: determine the maximum element in a vector, v = [2 3 1 5 8 9 2];

clc
clear
v = [2 3 1 5 8 9 2];
max_element = v(1);
for i = 2:length(v)
 if v(i) > max_element
 max_element = v(i);
 end
end
max_element

4.2.4 if … else … end (there are only two possible scenarios)
if <logical expression>

<statement group 1>

else

<statement group 2>

end

8

4.2.5 if … elseif … elseif … else … end

if <logical expression 1>

<statement group 1>

elseif <logical expression 2>

<statement group 2>

elseif <logical expression 3>

<statement group 3>

...

elseif <logical expression r>

<statement group r>

else

<statement group r+1>

end

Example: determine how many ‘2’, ‘3’, and ‘1’ in a vector, v = [2 3 1 5 8 9 2];
 clc

clear
v = [2 3 1 5 8 9 2];
number_1 = 0;
number_2 = 0;
number_3 = 0;
number_others = 0;
for i = 1:length(v)
 if v(i) == 1
 number_1 = number_1 + 1;
 elseif v(i) == 2
 number_2 = number_2 + 1;
 elseif v(i) == 3
 number_3 = number_3 + 1;
 else
 number_others = number_others + 1;
 end
end
disp('# of 1')
number_1
disp('# of 2')
number_2
disp('# of 3')
number_3

5. Searching and Sorting

5.1 Searching

 This is about searching an element in an array.

 One example with using for loops and comparison operation is given in section

4.2.5

 Another way to conduct searching is to use the function find

Example: determine how many ‘2’, ‘3’, and ‘1’ in a vector, v = [2 3 1 5 8 9 2];
clc
clear
v = [2 3 1 5 8 9 2];
number_1 = 0;

9

number_2 = 0;
number_3 = 0;
Index1 = find(v == 1);
number_1 = length(Index1)
Index2 = find(v == 2);
number_2 = length(Index2)
Index3 = find(v == 3);
number_3 = length(Index3)
disp('# of 1')
number_1
disp('# of 2')
number_2
disp('# of 3')
number_3

5.2 Sorting

 This is about sorting the elements in an array in an increasing or decreasing order

 Determining the maximum element in an array like the example given in Section

4.2.3 is one special case of sorting

 Bubble sort algorithm: repeatedly step through the list to be sorted, compare each

pair of adjacent items and swap them if they are in the wrong order.

 Functions to get the maximum and minimum elements in one dimensional array:

max() and min()

 The MATLAB function: arrange the data in the form of an array, and use the

function sortrows

Example: rank the students’ scores in Process Control final in an increasing order.

The first column of the following matrix shows the students’ ID, and the second

column shows the students’ score

[1 75

 2 60

3 90

4 85]

clc
clear
M = [1 75
 2 60
 3 90
 4 85];
score_sort = sortrows(M,2) % the positive '2' for ascending order;

'-2' for descending order
disp('the highest score')
score_sort(size(M,1),:)
disp('the lowest score')
score_sort(1,:)

The result is shown as:
score_sort =

http://en.wikipedia.org/wiki/Swap_%28computer_science%29

10

 2 60

 1 75

 4 85

 3 90

