Structural equation modeling (SEM) represents the union of regression, path analysis, and factor analysis, facilitating the investigation of hypothesized relations among both measured and latent variables. The particular advantage of methods involving latent variables is that theories may be investigated as they pertain directly to the underlying constructs of interest, rather than to the measured variables whose observed relations are often attenuated by error of measurement. This presentation will provide a very brief introduction to SEM (measured variable path analysis, confirmatory factor analysis, latent variable path models), a survey of some more advanced SEM possibilities (e.g., mean and growth structures), and some general cautions and caveats that should be heeded when utilizing this powerful and versatile method.