A CASE STUDY on BMP’s/LID at Penn’s SHOEMAKER GREEN

Grant Scavello
Candidate, M.S. Applied Geosciences ’13
University of Pennsylvania

gscav@wharton.upenn.edu (Penn Contact)
grantscavello@gmail.com (Professional)
SHOEMAKER OVERVIEW
OVERVIEW OF STUDY
DATA
Takeaways/Next Steps
Overview of Site

- **COST:** $8,500,000
- **Constructed:** 2011-2012
- **Opened:** Fall 2012
- **Architects:** Andropogon Associates
- **Purpose:** New commons area, rec space, stormwater mgmt/green infrastructure
So...A big opportunity for stormwater management and green infrastructure to intersect!
Stormwater

Rainfall - First 1"

* Additional water source is the condensate from the adjacent buildings

<table>
<thead>
<tr>
<th>Area</th>
<th>Capture Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rittenhouse Lab</td>
<td>0.8 acres 21,000 gallons</td>
</tr>
<tr>
<td>Palestra</td>
<td>1.1 acres 30,000 gallons</td>
</tr>
<tr>
<td>Hutchinson Gym</td>
<td>0.9 acres 24,000 gallons</td>
</tr>
<tr>
<td>3216 Chancellor</td>
<td>0.3 acres 9,000 gallons</td>
</tr>
</tbody>
</table>

87,000 gallons total per year
GOALS OF THE STUDY

- Five Year Monitoring Plan – UPenn Student Managed
- Best Management Plan (BMP)/Low Impact Development (LID)
- Sustainable SITES Initiative
- *COMPREHENSIVE MONITORING*

COMPREHENSIVE MONITORING

- STORMWATER
- SOILS
- VEGETATION/ Transpiration
- SOCIAL BEHAVIOR
- BMP’S/LID
- *Sustainable SITES Requirements*
Stormwater and Soils - Monitoring

Stormwater Objs:
- Manage stormwater onsite
- Improve water quality (comparison with surrounding sites).
- Create aesthetically pleasing stormwater facilities.

Soils Objs:
- To re-establish healthy soils on a former grayfield site.

SPECIFIC OBJECTIVES
- To rebuild the site’s ability to support healthy plants, water storage, and infiltration.
Vegetation Objectives:
- Establish regionally appropriate vegetative biomass
- Plant appropriate vegetation that is native to the eco-region
- Provide vegetated areas significant enough in size to contribute to the regional diversity of flora and provide habitat for native wildlife
- Utilize vegetation and other design features to reduce urban heat island effects

Social Objectives
- To understand how people utilize the space

Specific Objectives
- To monitor the site throughout the year and at various days and times of day to determine if elements of the site design influence the usage of the space.
Instrumentation and Sample Collection

PENN GREENFUND GRANT: $12,300

<table>
<thead>
<tr>
<th>Item</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solinst Levelogger Jr.</td>
<td>4</td>
</tr>
<tr>
<td>Turf-Tec Infiltrometer</td>
<td>1</td>
</tr>
<tr>
<td>Jet-Fill Tensiometer Model</td>
<td>5</td>
</tr>
<tr>
<td>Automatic Stormwater / Wastewater Sampler</td>
<td>1</td>
</tr>
<tr>
<td>SC-1 Leaf Porometer</td>
<td>1</td>
</tr>
<tr>
<td>LP-80 PAR/LAI</td>
<td>1</td>
</tr>
<tr>
<td>Other Ancillary Supplies</td>
<td>-</td>
</tr>
</tbody>
</table>
Student Input and Collection
STORMWATER - DATA

<table>
<thead>
<tr>
<th>Sample</th>
<th>8.11.13 12pm Storm</th>
<th>9.10.13 Rsampler</th>
<th>10.7.13 shoe waterfall</th>
<th>rainbarrel 10.12.13</th>
<th>Tapwater 1</th>
<th>Tapwater 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>-</td>
<td><0.002</td>
<td>0.003</td>
<td><0.002</td>
<td><0.001</td>
</tr>
<tr>
<td>Na</td>
<td>ppm</td>
<td>3.802</td>
<td>0.58</td>
<td>-</td>
<td>1.472</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>ppm</td>
<td>2.661</td>
<td>1.122</td>
<td>12.801</td>
<td>0.806</td>
<td>13.39</td>
</tr>
<tr>
<td>Ca</td>
<td>ppm</td>
<td>12.004</td>
<td>4.397</td>
<td>>41.941</td>
<td>1.588</td>
<td>>43.961</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td><0.001</td>
<td><0.002</td>
<td>0.006</td>
<td>0.007</td>
<td><0.006</td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>-</td>
<td>-</td>
<td><0.01</td>
<td>0.002</td>
<td>>0.180</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.001</td>
<td>>0.287</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td><0.002</td>
<td>0.002</td>
<td><0.009</td>
<td><0.001</td>
<td>>0.003</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td><0.001</td>
<td><0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0.039</td>
<td>0.041</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>ppm</td>
<td>1.039</td>
<td>0.375</td>
<td>10.567</td>
<td>0.351</td>
<td>6.277</td>
</tr>
</tbody>
</table>

N, P, DO, turbidity pH to be analyzed using self-test kits, manual sampler
STORMWATER – TRANSDUCER DATA

Site 1 – Rain Garden

Site 2 – 33rd St. Manhole

Site 4 – Lower Lawn

Site 3 – COMBINED SEWER 33rd St.
Soil Classification

- USDA Classification system:
 - Soil Classified as: SAND
- Unified Soil Classification
 - SP-SM (Poorly graded SAND-Silty SAND)
- Est. Permeability: $3.2 \times 10^{-2} \text{ cm/s}$ [Hazen correct.]

SOILS - DATA

- Grant Scavello - UPenn

Graphs showing percentage passing vs. grain size for different sample sites.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Conductance - g total</th>
<th>Temperature</th>
<th>Sample ID</th>
<th>Sensor</th>
<th>Leaf Sensor</th>
<th>Filter Sensor</th>
<th>Plant</th>
<th>Energy loss per unit leaf area (J (W m^{-2}))</th>
<th>A (m) crown diameter</th>
<th>LAI</th>
<th>Energy loss per tree (E^*) (LAI^*) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/12/2013</td>
<td>2:58 PM</td>
<td>80.4</td>
<td>34.2</td>
<td>LPS1825</td>
<td>3105606</td>
<td>40.6</td>
<td>20.3</td>
<td>Magnolia - RG</td>
<td>79.09139057</td>
<td>2</td>
<td>2.77</td>
<td>438.166306</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:00 PM</td>
<td>143.0</td>
<td>34.0</td>
<td>LPS1825</td>
<td>3105606</td>
<td>49.8</td>
<td>24.4</td>
<td>Magnolia - RG</td>
<td>140.6724989</td>
<td>2</td>
<td>2.77</td>
<td>779.329643</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:01 PM</td>
<td>101.1</td>
<td>33.8</td>
<td>LPS1825</td>
<td>3105606</td>
<td>44.6</td>
<td>22.2</td>
<td>Magnolia - RG</td>
<td>99.45447297</td>
<td>2</td>
<td>2.77</td>
<td>559.977888</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:03 PM</td>
<td>74.4</td>
<td>33.5</td>
<td>LPS1825</td>
<td>3105606</td>
<td>39.3</td>
<td>19.7</td>
<td>Magnolia - RG</td>
<td>73.18904836</td>
<td>2</td>
<td>2.77</td>
<td>405.667327</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:04 PM</td>
<td>143.7</td>
<td>33.2</td>
<td>LPS1825</td>
<td>3105606</td>
<td>50.0</td>
<td>24.6</td>
<td>Magnolia - RG</td>
<td>141.361065</td>
<td>2</td>
<td>2.77</td>
<td>783.140524</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:06 PM</td>
<td>210.7</td>
<td>33.4</td>
<td>LPS1825</td>
<td>3105606</td>
<td>56.0</td>
<td>27.7</td>
<td>Nyssa - PB</td>
<td>207.270598</td>
<td>6</td>
<td>3.17</td>
<td>3942.266774</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:11 PM</td>
<td>112.6</td>
<td>33.1</td>
<td>LPS1825</td>
<td>3105606</td>
<td>47.4</td>
<td>24.9</td>
<td>Nyssa - PB</td>
<td>110.7672963</td>
<td>6</td>
<td>3.17</td>
<td>2196.793976</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>3:12 PM</td>
<td>292.5</td>
<td>32.9</td>
<td>LPS1825</td>
<td>3105606</td>
<td>60.6</td>
<td>30.1</td>
<td>Nyssa - PB</td>
<td>287.7392022</td>
<td>6</td>
<td>3.17</td>
<td>5477.99626</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:15 PM</td>
<td>299.5</td>
<td>34.6</td>
<td>LPS1825</td>
<td>3105606</td>
<td>59.6</td>
<td>28.1</td>
<td>Nyssa - PB</td>
<td>294.7410195</td>
<td>6</td>
<td>3.17</td>
<td>5609.974191</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:17 PM</td>
<td>384.5</td>
<td>34.1</td>
<td>LPS1825</td>
<td>3105606</td>
<td>63.1</td>
<td>30.5</td>
<td>Nyssa - PB</td>
<td>370.3903907</td>
<td>6</td>
<td>3.17</td>
<td>7196.98527</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:19 PM</td>
<td>436.1</td>
<td>33.0</td>
<td>LPS1825</td>
<td>3105606</td>
<td>64.9</td>
<td>31.8</td>
<td>Quercus phellos - TT</td>
<td>429.247735</td>
<td>3</td>
<td>1.83</td>
<td>2356.145932</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:20 PM</td>
<td>493.3</td>
<td>32.5</td>
<td>LPS1825</td>
<td>3105606</td>
<td>66.4</td>
<td>32.7</td>
<td>Quercus phellos - TT</td>
<td>485.4616967</td>
<td>3</td>
<td>1.83</td>
<td>2665.948106</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:22 PM</td>
<td>472.7</td>
<td>32.0</td>
<td>LPS1825</td>
<td>3105606</td>
<td>69.9</td>
<td>32.4</td>
<td>Quercus phellos - TT</td>
<td>465.1898146</td>
<td>3</td>
<td>1.83</td>
<td>2553.807141</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:23 PM</td>
<td>453.2</td>
<td>31.9</td>
<td>LPS1825</td>
<td>3105606</td>
<td>65.6</td>
<td>32.5</td>
<td>Quercus phellos - TT</td>
<td>445.9887647</td>
<td>3</td>
<td>1.83</td>
<td>2448.533218</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:25 PM</td>
<td>420.0</td>
<td>31.5</td>
<td>LPS1825</td>
<td>3105606</td>
<td>65.4</td>
<td>32.9</td>
<td>Quercus phellos - TT</td>
<td>418.2463557</td>
<td>3</td>
<td>1.83</td>
<td>2236.475238</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:27 PM</td>
<td>143.6</td>
<td>31.2</td>
<td>LPS1825</td>
<td>3105606</td>
<td>50.7</td>
<td>25.5</td>
<td>Liriodendron tulipera</td>
<td>141.3182317</td>
<td>3</td>
<td>1.67</td>
<td>708.0043499</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:29 PM</td>
<td>120.3</td>
<td>31.5</td>
<td>LPS1825</td>
<td>3105606</td>
<td>49.3</td>
<td>25.2</td>
<td>Liriodendron tulipera</td>
<td>126.2613449</td>
<td>3</td>
<td>1.67</td>
<td>632.560330</td>
</tr>
<tr>
<td>6/12/2013</td>
<td>4:31 PM</td>
<td>325.9</td>
<td>31.4</td>
<td>LPS1825</td>
<td>3105606</td>
<td>61.6</td>
<td>30.2</td>
<td>Quercus phellos - LowL</td>
<td>320.7215301</td>
<td>3</td>
<td>1.83</td>
<td>1760.7612</td>
</tr>
</tbody>
</table>

Grant Scavello - UPenn
SOCIAL BEHAVIOR - DATA

Data Measured by:

- Activity on Space
 - (1-9 coded)
- General Age (YA/A)
- Gender
 - EX: 3AF = Biking, adult Female
- 5 Minute Survey – Behavioral/ Green Infrastructure
- Behavioral Data Integrated/Heat-Mapped via GIS Software

Grant Scavello - UPenn
LESSONS LEARNED

THE FUTURE

In Two Seasons of Monitoring, We’ve Learned...

- Projects like Shoemaker are expensive... How to afford on citywide/larger scale
- Initial setup can take awhile. Detailed action plan important
- Collaboration/shared practices with Universities, surrounding community essential
 → Penn/Villanova/Drexel/ Temple

FUTURE WORK ➔ THROUGH YR. 5

➢ Present to Penn FRES Quarterly to give Penn Greenfund updates
➢ Annual Reporting to Sites Initiative ➔ Shoemaker Certified
➢ Continued Education for Students to Monitor Through 5-Yr Duration
➢ Submission of Data to Andropogon, PWD/GWCC, Stormwater Publications

Grant Scavello - UPenn
Special Thanks to:

- Andropogon Associates
- Craig Calabria, PE, Ph.D. – Project Advisor
- Penn Student Team
 - Alicia Coleman, Nathan Sell, Sara Kinslow
- Penn GreenFund

Questions?

Grant Scavello
Candidate, M.S. Applied Geosciences ’13

gscav@wharton.upenn.edu (Penn Contact)
grantscavello@gmail.com (Professional)