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Abstract—Existing three-dimensional (3-D) compressive 

sensing-based millimeter-wave (MMW) imaging methods require 

a large-scale storage of the sensing matrix and immense 

computations owing to the high dimension matrix-vector model 

employed in the optimization. To overcome this shortcoming, we 

propose an efficient compressive sensing (CS) method based on a 

holographic algorithm for near-field 3-D MMW imaging. An 

interpolation-free holographic imaging algorithm is developed 

and used as a sensing operator, in lieu of the nominal sensing 

matrix typically used in the CS iterative optimization procedure. 

In so doing, the problem induced by the large-scale sensing matrix 

is avoided. With no interpolations required, both the 

computational speed and the image quality can be improved. 

Simulation and experimental results are provided to demonstrate 

the performance of the proposed method in comparison with 

those of the K  based CS and the traditional Fourier-based 

imaging techniques.  

 

Index Terms—Near-field, millimeter-wave (MMW) imaging, 

compressive sensing (CS), holographic algorithm.  

 

I. INTRODUCTION 

ILLIMETER-WAVE (MMW) has attractive 

characteristics compared with waves in the microwave 

band or lower frequency bands. These include higher carrier 

frequency and wider usable frequency band that enables higher 

target cross-range and down-range resolutions. Another 

important feature of MMW is the design of small and light 

systems and equipment. Accordingly, it is beneficial to adopt 

MMW for short-range broadband communications [1], [2], 

high-resolution sensing [3], [4], and radio astronomy [5]. 

MMW imaging techniques have been widely developed and 

applied to non-destructive testing [6], biomedical diagnosis [7], 

and personnel security inspection [8]-[11]. 

MMWs are capable of penetrating regular clothing to form 

an image of a person and concealed objects. Most importantly, 

MMWs are non-ionizing and, therefore, pose no known health 
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hazard at moderate power levels. MMW imaging systems can 

be classified into two types: passive imaging systems and active 

imaging systems. Both types have their own offerings and 

challenges. This paper focuses on active MMW imaging 

techniques, which typically implement large scale antenna 

arrays to illuminate the whole human body, leading to high 

system cost. Compressive sensing (CS) and sparse 

reconstruction techniques, on the other hand, have been used to 

reduce the number of array elements, thereby the system cost, 

without degradation of image quality [12]-[14]. CS has been 

extensively studied in radar imaging [15]-[19], microwave 

imaging [20]-[23], array synthesis and diagnosis [24], [25], and 

direction-of-arrival estimation [26]-[28].  

CS methods are typically based on the matrix-vector model, 

which employs a large-scale sensing matrix in 3-D MMW 

imaging for personnel inspection and security applications. 

Such model was incorporated in [29] for a 3-D compressive 

phased array imaging. CS was applied to single-frequency 2-D 

MMW holographic imaging in [30] and [31], where a 

Fourier-based imaging operator represented the sensing matrix. 

This replacement, in essence, avoided storing and processing of 

a large-scale sensing matrix which, in turn, simplified imaging 

and permitted its realization on an ordinary personal computer. 

In [32], the 3-D K  algorithm, referred to as range migration 

algorithm, was used in combination with the CS principle for 

image reconstruction. Nevertheless, this algorithm includes the 

forward and inverse Stolt interpolations that entail require high 

computations and can lead to reduced image fidelity. An 

interpolation-free SAR imaging algorithm, named range 

stacking, was proposed in [33] and extended to 3-D imaging in 

[34]. The range stacking reconstruction method forms the target 

image at different range points by matched filtering the SAR 

signal in the spatial frequency domain. The result is integrated 

over frequencies to yield the marginal Fourier transform of the 

target function.  

In [35] and [36], we considered a single-frequency based 

auto-focus holographic imaging algorithm. The auto-focus was 

obtained by calculating the amplitude integral values of the 

images reconstructed at different focusing range bins. These 

values draw to a minimum when the image is well focused. In 

this paper, we extend the above algorithm to the wideband 

signal, and change the integral variables of the imaging model 

to eliminate the Stolt interpolation. This changing is similar to 

the work in [33], [34]. However, unlike these references, we 

first apply the inverse Fourier transform over the azimuth- and 

elevation-frequencies with respect to the matched filtered data. 
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The results are then integrated over the fast-time frequencies, 

which can be considered as a coherent summation of the 

single-frequency holographic imaging results. These steps 

amount to a linear relationship between the scene and the 

measurements, defined by a sensing operator, and as such, the 

CS problem can be readily formulated. Due to the fact that 

interpolations are avoided in the iterations underlying the 

optimization algorithm, the computational speed and 

optimization solution can both be improved in comparison with 

the 3-D K -based CS method [32].  

In order to deal with compressed data, which corresponds to 

selecting few antennas, we utilize a uniform-random spatial 

undersampling scheme, in lieu of the totally random 

undersampling scheme. The benefits of the former over the 

latter sampling strategy can be made evident by analyzing the 

mutual coherence measure of the sensing operator. In imaging, 

this measure, in essence, represents the maximum sidelobe 

value of the point spread function (PSF) in Fourier-based 

imaging. Accordingly, it can be used to quantify the effect of 

different undersampling schemes on performance. Also, we 

compare the PSFs of the proposed sensing operator and that of 

the K -based sensing operator, and show the superior 

performance of the former.  

The remainder of this paper is organized as follows. Section 

II presents the formulation of the 3-D interpolation-free 

holographic imaging algorithm, which is used to construct the 

operator considered as the sensing matrix of CS. In Section III, 

we provide the CS imaging method and present the 

uniform-random under-sampling scheme. The relationship 

between the mutual coherence and the point spread function is 

analyzed. Numerical simulations and experimental results are 

shown in Section IV. Finally, concluding remarks are presented 

in Section V. 

II. 3-D INTERPOLATION-FREE HOLOGRAPHIC 

IMAGING ALGORITHM 

A. Formulation of the interpolation-free holographic 

imaging algorithm 

The configuration of the imaging system is shown in Fig. 1. 

For a frequency modulated continuous wave (FMCW) 

transceiver, the transmitted signal can be expressed as,  

  2

T 0

1
exp 2π

2
s t j f t Kt

  
   

  
,  (1) 

where 
0f  is the center frequency, t  is the fast-time variable 

within one pulse repetition interval, and K  is the frequency 

slope of the transmitted signal. The backscattered signal from a 

point target is given by,  

     R T', ', , , ds x y t x y z s t   , (2) 

where  , ,x y z  represents the backscattering coefficient of 

the point target at location  , ,x y z , and 
d  is the round-trip 

time-delay defined by the propagation speed of the 

electromagnetic wave and the distance from the receiver at 

 ', ',x y Z  to the target. All array elements lie on plane Z . 

 
Dechirp-on-receive is used to demodulate the received signal, 

and yields the intermediate frequency signal,  

     IF 0', ', , , exp 2π ds x y f x y z j f f      , (3) 

where f Kt  is considered as the fast-time frequency. We 

assume the residual video phase (RVP) has been removed. The 

time-delay is given by,  

     
2 2 2

2 ' '
d

x x y y z Z

c


    
 .  

Due to the target located in the near-field, which is 

illuminated by spherical waves, the square root of the above 

time-delay expression cannot be simplified, as in the case of 

far-field. For a volume target, extending in all three 

dimensions, 

         
2 2 2

2 ' '

IF ', ', , ,
j k x x y y z Z

s x y f x y z e dxdydz
     

  , 

 (4) 

where  02π /k f f c   is considered as the wavenumber. In 

the above equation, we have ignored the propagation loss of 

spherical waves which is characterized by 

     
2 2 2

1/ ' 'x x y y Z x     
 

 for the round-trip 

propagation. The exponential term in (4) represents a spherical 

wave emanating from  ', ',x y Z . This term can be decomposed 

into a superposition of plane wave components [8], as  

           
2 2 2

''
'2 ' ' '

' '
yx z

jk y yj k x x y y z Z jk x x jk z Z

x ye e e e dk dk
          

 
  (5) 

where 'xk  and 
'yk  are the Fourier transform variables 

corresponding to 'x and 'y , respectively. The spatial 

frequencies 'xk  and 
'yk  range from 2k  to 2k . Substituting 

(5) into (4), and using the Fourier transform, we obtain [8],  

   IF, , , , yxz z
jk yjk xjk Z jk z

x y x y zx y z S k k k e e e e dk dk dk 
  , (6) 

where 
2 2 24z x yk k k k   ,     IF , IF, , FFT , ,x y x yS k k k s x y f  

and ,FFTx y   indicates the 2-D fast Fourier transform (FFT) 

over  ,x y . The distinction between the primed and unprimed 

coordinates is now dropped since the two coordinates 

coinciding. Typically, the data is sampled at uniform intervals 

 
Fig. 1.  Geometrical configuration of the imaging system. 
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of position  ,x y  and fast-time frequency f  or k . These 

samples are nonuniformly spaced in 
zk  and, as such, require 

resampling at equally spaced positions which is referred to as 

Stolt interpolation [37]. To avoid this interpolation, and similar 

to the approach in [33], [34], we change the integral variable 

zdk  in (6) to dk and modify the integrant as follows:  

 

     
2 2 24

IF

, ,

, , , ,x y yx
j k k k z Z jk yjk x

x y x y x y

x y z

S k k k e e e J k k k dk dk dk



  



 
, 

 (7) 

where  , ,x yJ k k k  is given by, 

 
2 2 2

4
, ,

4

z

x y

x y

k k
J k k k

k k k k


 
  

. 

In [33], [34], the summation over fast-time frequencies was 

carried out prior to performing the inverse FFT over the spatial 

frequencies, with matched filter used to specify the particular 

range bin. On the opposite, in this paper, we first perform the 

inverse FFT with respect to the matched filtered outputs over 

the spatial frequencies 
xk  and 

yk , then the results are 

integrated over all fast-time frequencies (or wavenumbers). In 

this way, imaging can be considered as an extension of 2-D 

single-frequency holographic imaging algorithm.   

We set        
2 2 24

IF IF' , , ; , , , ,x yj k k k z Z

x y x y x yS k k k z S k k k e J k k k
  

 , 

and substituting it into (7) yields,  

    IF, , ' , , ; yx
jk yjk x

x y x yx y z S k k k z e e dk dk dk    . (8) 

Clearly, the inner double integral represents a 2-D inverse 

Fourier transform. Thus,  

      IF,
, , IFFT ' , , ;

x y
x yk k

x y z S k k k z dk   , (9) 

where 
  ,

IFFT
x yk k

  represents the 2-D inverse FFT over 

 ,x yk k . The above integral over k  can be performed in 

parallel for all range bins, as also stated in [33] and [34]. The 

above steps eliminate Stolt interpolations.   

It is noted from (7) to (9) that the inner integral over k  is 

identical to the single-frequency holographic imaging 

algorithm at a specified range bin [8]. Therefore, the above 3-D 

imaging is accomplished by the following procedure: We first 

perform a 2-D single-frequency based imaging in parallel at 

different specified range bins with respect to all individual 

fast-time frequencies. Then, these images are summed 

coherently over frequencies, and a well-focused 3-D image can 

be obtained. Therefore, the integral (9) can be considered as an 

extension of single-frequency holographic imaging algorithm, 

and is referred to as 3-D holographic imaging algorithm, for 

convenience. A byproduct of the above problem formulation is 

that we can freely choose the imaging zone of interest along the 

z direction. This is different from the traditional 3-D K  

algorithm, which generates the image as follows [8]:  

 

   
2 2 2

2 2 2

4

, , , IF

4

, ,

IFFT StoltInterp FFT , , .x y

x y z

x y z

j k k k Z

k k k x y

k k k k

x y z

s x y k e



  

  



  
 
  

 

 (10) 

The 
2 2 24

StoltInterp

x y zk k k k  

 indicates the Stolt interpolation from 

 , ,x yk k k  to  , ,z x yk k k  which is necessary for performing 

the 3-D inverse FFT. Due to the properties of FFT, imaging 

along the entire unambiguous range along the z direction must 

be implemented.  

B. Forward and backward operators 

Below, we construct a forward operator   which will be 

used as the sensing matrix for the sparse reconstruction 

presented in the next section. According to (9), the backward 

operator †  is as follows,  

       
    

2 2 24†

,,
= IFT FT , ,x y

x y

j k k k z Z

x yx yk k
k

e J k k k
  

S S ,(11) 

where the term in    stands for the object on which the 

operator acts. We can then formulate the imaging problem (9) 

as the following matrix form:  

 †G S , (12) 

where G  is a 3-D matrix representing the reconstructed image 

 , ,x y z , with three dimensions corresponding to the x , y , 

and z  directions, respectively, in the image space. The symbol 

S  represents the scattered data  IF , ,s x y k  also in a 3-D 

matrix form, with three dimensions corresponding to the x and

y directions of the antenna array, and the fast-time frequency 

dimension, respectively, in the scattered data space. Eq. (12) 

shows that the 3-D image is obtained through the backward 

operator 
†  acting on the 3-D scattered data.   

The forward operator   can be obtained by inversing the 

process of (11) as,  

       
    

2 2 24 1

,,
= IFT FT , ,x y

x y

j k k k z Z

x yx yk k
z

e J k k k
    G G . 

 (13) 

Clearly, no interpolations are included in (11) or (13). Similarly, 

 S G .  

The complexity of the K  algorithm and the proposed 

algorithm is given in Table I in terms of the number of floating 

point operations (FLOP). Assume that the received data and the 

reconstructed image have a same size of R A EN N N  , along 

the range, azimuth, and elevation directions, respectively. We 

use IN  to represent the interpolation kernel length which is 

typically chosen as 8 for the sinc function kernel. It is noted 

from Table. I that the bulk of the computation load of the two 

algorithms depends on the size of the image. In practice, the 

size of the image scene of a person usually spans 

2m 1m 0.5m   with respect to the height, width and thickness. 

The value of RN  can assume smaller values than AN  and EN . 
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If we choose the resolution to be 5mm 5mm 3cm   (Usually, 

the range resolution is lower than the transverse resolution due 

to the limit on bandwidth), then the computation efficiency can 

be computed to be
Holo3D

FLOP
1.2

FLOP

K   . Although this 

efficiency appears modest, it is proven to be important when 

considering the overall optimization problem, as described in 

the next section. 

 

III.  CS APPROACH FOR NEAR-FIELD 3-D IMAGING 

In this section, we perform CS-based 3-D MMW imaging 

based on the aforementioned algorithm incorporating the 

sensing operator.  

The theory of compressive sensing states that sparse signals 

can be recovered using far fewer samples than that required by 

the Nyquist sampling. Considering spatial sampling, CS can be 

used to reduce the number of antenna array elements, thus 

reducing the overall system cost. In CS, the relationship 

between the measurements and the sparse image assumes a 

linear model, namely,  y  , where Py C  is a vector of 

measurement samples, 
P Q C  is known as the sensing 

matrix with P Q , and   can be expressed as  α  

where 
Q Q C  is a linear sparsifying basis, and 

Qα C  is a 

sparse vector. 

Due to sparsity, α  can be reconstructed by solving the 

following convex optimization problem,  

1
min s.t. 
α

α y α , (14) 

where 
1 ll

α  denotes the 
1
 norm of α  and   . 

Eq. (14) can be solved efficiently using several linear or 

quadratic programming techniques [12]. In this paper, we 

assume that the image is sparse in its canonical basis, and as 

such, set the sparsifying basis to an identity matrix.  

For the 3-D MMW imaging, discussed in this paper, the 

elements of the sensing matrix   are given by, 

     
2 2 2

, , exp 2 ' 'n p q n q p q p qj k x x y y z Z
 

       
 

,(15) 

where 1,2, ,n N , 1,2, ,p P , and 1, 2, ,q Q . The 

variables N , P , and Q , respectively, represent the total 

numbers of equivalent frequencies, spatial measurement 

samples, and pixels of the image scene. Accordingly, the size of 

sensing matrix   is NP Q . For the 3-D human body 

imaging scene, Q  could be of the order of 105 (assuming the 

cross-range resolution is 1cm and the range resolution is 3cm). 

The number of measurements N P  could be in the order of 

106, under Nyquist sampling. Thus, the sensing matrix could be 

prohibitively large, causing challenges in both storage and 

processing using a personal computer. The computational 

complexity for one-time multiplication of this matrix with a 

1Q  vector should be  6 2 1NP Q NP Q    FLOPs, which 

will be much higher than that of the operators. For a same 

image size and data size, as illustrated in Table I, the 

computation efficiency can be calculated and it is equal to 

Matrix(15) 4

Holo3D

FLOP
5 10

FLOP
    . Consequently, to avoid storing and 

processing the so large-scale matrix-vector model, we use the 

operators   and †  introduced in Section II.B, in lieu of (15), 

to construct the model.  

The MMW images of human body are relatively smooth, and 

the concealed weapons usually are piecewise-constant objects 

for which the discrete gradient turns out sparse. This property 

invites the applications of total variation (TV) compressive 

sensing techniques [38]. Since there are also very small but 

lethal objects, such as razor and small lighter, which can be 

considered as point targets, we utilize the following 

unconstrained optimization model to reconstruct the image.  

  2

1 21 TV2

ˆ arg min     G G S G G ,  (16) 

where 
1  and 

2  provide a tradeoff between fidelity to the 

measurements and noise sensitivity. In this model, the symbols 

Ĝ , G  and S  represent the reconstructed image, the target 

scene, and the scattered data, respectively, all being 3-D 

matrices. The symbol   denotes the sensing operator, as 

demonstrated in (13). The 
2

 and 
1
 norm in (16) are given as: 

 
1/ 2

2

2 ii
x X  and 

1 ii
xX , respectively, where 

1 2 31,2, ,i N N N    for the size of X  being 
1 2 3N N N  . 

The TV norm is obtained by,  

31 2
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3
1 2 3 1 2 3

1 2

1 2 3 1 2 3 1 2 3 1 2 3

1 2

3

1 2 3 1 2 3

3

TV

11 1
, , 1, , , , , 1,

1 1 1
, , , , 1

1 1

, , 1, , , , , 1,

1 1

1

, , , , 1

1

.

NN N
n n n n n n n n n n n n

n n n
n n n n n n

N N

n N N n N N N n N N n N

n n

N

N N n N N n

n

x x x x

x x

x x x x

x x

 
 

  


 

 

 









    
 
   

   

 

  

 



X

 (17) 

Many optimization algorithms, such as the iterative 

shrinkage-thresholding based algorithms [39], Least Absolute 

Shrinkage and Selection Operator (LASSO) [40], can be used 

to solve the underdetermined equation (16). Because it is not 

the emphasis of this paper, we just adopt the algorithm in [41] 

TABLE I 
COMPARISON OF COMPUTATIONAL COMPLEXITY 

 K  algorithm 
3-D Holographic 

algorithm 

Azimuth FFT 
25 logR E A AN N N N   25 logR E A AN N N N  

Elevation FFT 
25 logR A E EN N N N  25 logR A E EN N N N  

Matched filter 
multiplication 

6 R A EN N N  6 R A EN N N  

Stolt interpolation  2 2 1i R A EN N N N  0 

Azimuth IFFT 
25 logR E A AN N N N  25 logR E A AN N N N  

Elevation IFFT 
25 logR A E EN N N N  25 logR A E EN N N N  

Range IFFT 
25 logE A R RN N N N  0 

Summation along 

frequency 

0  2 1R R A EN N N N  
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to minimize (16), which is based on the conjugate gradient 

method. The gradient of  
2

1 21 TV2
f     G S G G  

is given by, 

  †

1 21 TV
2f         G S G G . (18) 

The non-smooth functions in (18), i.e., the 
1
 norm and the TV 

norm, can be smoothed by using an approximate function 

*x x x   , where   is a small positive smoothing 

parameter. This enables the corresponding gradient to be 

calculated. The reader can refer to [41].  

Another key factor in CS framework is the restricted 

isometry property (RIP) [12], which is widely used for 

analyzing the performance of sparse reconstruction algorithms. 

However, the RIP is often difficult. An alternative to RIP is the 

mutual coherence of the sensing matrix, which is a more 

practical approach for evaluating the CS recovery properties. 

The mutual coherence of a sensing matrix is defined as follows 

[16]:  

 
2 2

,
max

i j

i j
i j

 
 

 



  , (19) 

where 
i  represents the ith column of the matrix  . If   is 

small, we state that   is incoherent. However, in this paper, 

we cannot directly use (19) to evaluate the mutual coherence 

due to the fact that we represent   as a sensing operator as 

shown in (13). Instead, as has been shown in [41] and [16], the 

point spread function (PSF) could be used to measure the 

mutual coherence of a sampling scheme. It is defined as 

follows:  

 
2 2

,
PSF ,

i j

i j

j i
 

 


e e

e e
,  (20) 

where 
ie  is the ith vector of the natural basis having 1 at the ith 

location and zeros elsewhere. The inner product of 
H H,i j j i   e e e e  amounts to the selection of the  ,i j

-th element of H  , which is exactly the inner product 

,i j   in (19) if   has a matrix form, where the superscript 

“H” represents the Hermitian operator. Accordingly, a simple 

measure to evaluate the incoherence is the maximum of the 

sidelobes of PSF:  

 

 

PSF ,
max

PSF ,i j

i j

i i



 . (21) 

Although, with the proposed approach, the mutual coherence 

in (19) cannot be directly computed, the PSF can be readily 

obtained. It is desirable to have the  PSF , i ji j   to be as small 

as possible, and have random noise-like statistics for the 

random undersampling schemes. From (20), we can represent 

ie  as a target scene with only one point target located at its ith 

element. Then, the imaging procedure is given by  †ˆ
i e y , 

where  iy e . Because 
ie  only has one nonzero element at 

the ith position, then   †ˆ
i i e e  corresponds to the ith 

column of H   when   is a matrix, as illustrated in Fig. 2. 

Note that all elements, except for those on the diagonal of 
H  , are sidelobes of the PSFs. The diagonal elements are the 

main-lobes of PSFs corresponding to the point targets located at 

all the possible positions in the entire target scene. In this 

respect, the maximum sidelobe value of ˆ
ie  could be used to 

evaluate the mutual coherence.  

Based on the above discussion, we analyze the effect of 

different undersampling schemes on the PSF. A 

uniform-random undersampling scheme is applied to choose 

the 2-D antenna positions. This approach has been used in [42] 

for stepped frequency waveform design, and yield a better 

performance than a totally random undersampling strategy. 

Specifically, in uniform-random undersampling, we first divide 

the 2-D antenna positions into a number of non-overlapping 

groups. Each group consists of the same number of contiguous 

antenna positions out of which few are selected. In so doing, we 

provide more uniform illumination of the target scene. In the 

simulation, we perform 200 independent runs with respect to 

different selections of the antenna positions according to their 

corresponding undersampling schemes. The mean of the PSFs 

is computed. We project the maximum values of the mean PSFs 

to one dimension, such as the azimuth dimension, as shown in 

Fig. 3, for both random and uniform-random undersampling 

schemes. The level of the horizontal line measures the maximal 

value of the sidelobes and aliasing artifacts. It is evident from 

Fig. 3 that the artifacts introduced by uniform-random 

undersampling are lower than those by totally random 

undersampling. Moreover, the variation of the artifacts of the 

uniform-random scheme is also lower than that of the totally 

random scheme. In Fig. 4, we compare the PSFs for different 

sensing operators, such as the K  based sensing operator and 

the proposed operator. It is evident that the level and variation 

of the artifacts and sidelobes for the proposed sensing operator 

are both lower than those for the K  based operator, which 

indicates better incoherence. The aliasing artifacts can be 

removed by using a nonlinear reconstruction technique 

improving sparsity as introduced in [16].  

 

 

Fig. 2.  Illustration of the relationship between vector ˆ
ie  and matrix 

H  .  

H 

ˆ : the -th columni ie

=

ˆ
ie ie
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IV. SIMULATIONS AND EXPERIMENTAL RESULTS 

This section demonstrates the performance of the proposed 

3-D imaging technique using simulation and real data as well as 

evaluates the technique computational efficiency.  

A. Simulation results 

First, we compare the imaging results of the 3-D holographic 

algorithm with the K  algorithm. The operating frequencies 

varies from 72 GHz to 76 GHz. The size of the antenna array is 

64 64  elements, and the spacing of the antenna elements in 

both dimensions is 3 millimeter. The target model is shown in 

Fig. 5. Fig. 6 depicts the 3-D imaging results of both the 

proposed algorithm and the K  algorithm. In order to reveal 

image details, we project the 3-D image onto a 2-D planes by 

using a maximum value projection, as shown in Figs. 7 and 8, 

which, respectively, correspond to the azimuth-range vs. 

elevation-range and the azimuth-range vs. down-range 

projections. Both Figures are plotted with a dynamic range of 

30 dB. It is noted that there are no visible differences between 

the imaging results of the two algorithms, and both obtain a 

high resolution image of the target.  

 

 
Next, we construct the sensing operators for CS optimization 

model for both algorithms, as described in Sec. III. We present 

the computational time for the Holography-CS and the K
-CS in Fig. 9. The size of the reconstructed image varies from

16 16 16  , 16 32 32   to 16 64 64  . A Dell OPTIPLEX 

7010 desktop computer with four Intel Core i7 processors 

@3.4GHz and 16-GB memory is used for the simulations. 

Clearly, the Holography-CS method is much faster than the 

K -CS method. The computational time of the K -CS could 

be ten times of that of Holography-CS. The difference becomes 

even more pronounced if we utilize the fact that the imaging 

region along the range direction can be selected for the 

Holography-CS, and we can just reconstruct the image over 

only the region of interest. On the other hand, the K -CS 

method needs to reconstruct the image over the entire 

unambiguous range which is determined by the sampling 

interval of the operating frequencies.  

 
Fig. 3.  Maximum projections of the PSFs using 12.5% of full data for the 

random undersampling scheme and the uniform-random undersampling 

scheme.  

 
Fig. 4.  Maximum projections of the PSFs using 12.5% of full data for the 

K  based operator and the proposed operator, both utilizing the 

uniform-random undersampling scheme.  

 
Fig. 5.  Target model for simulation.  

 
(a) 

 
(b) 

Fig. 6.  3-D plot of the imaging results. (a) the 3-D holographic algorithm; (b) 

the K  algorithm.   
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Fig. 10 illustrates the normalized root mean square errors 

(RMSEs) of the above two operator-based CS methods as well 

as those of the traditional Fourier based method (specifically, 

the K  algorithm), for different signal-to-noise ratios (SNRs) 

and data ratios. The RMSE can be calculated by 

     
2

1 1 1

ˆRMSE= 1/ , , , ,
R A EN N N

R A E n p q
N N N n p q n p q

  
 
    G G , 

where G  and Ĝ  represent the target model and the 

corresponding reconstructed image, respectively, both with the 

size of 
R A EN N N  . We perform 50 independent runs for 

each SNR and data ratio to obtain the error means and standard 

deviations. It is noted from Fig. 10 that the means and standard 

deviations of RMSEs of the operator-based CS methods are 

both much lower than those of the Fourier based method 

(except for the data ratio 0.2, the deviation of the Fourier 

method is smaller than that of the CS methods). The 

Holography-CS method has smaller errors than the K -CS. 

On the other hand, the errors of these two methods exhibit a 

small increase when the data ratio exceeds some extent. It could 

be caused by the combined effects of mutual coherence and 

data ratio.  

 

 

 

 

 

  
(a)                                                          (b) 

Fig. 7.  Maximum projected imaging results of the 3-D holographic algorithm. 

(a) azimuth-elevation dimensions; (b) azimuth-range dimensions.    

  
(a)                                                        (b) 

Fig. 8.  Maximum projected imaging results of the K  algorithm. (a) 

azimuth-elevation dimensions; (b) azimuth-range dimensions.   

 
Fig. 9.  Comparison of the computational time with different image size. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10.  Comparison of the RMSEs with respect to different SNRs. 

 
Fig. 11.  W-band imaging system.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

 

B. Experimental results 

For the real measured data, we provide a comparison 

between the Holography-CS and Fourier-based imaging 

method. The results of K -CS method are not given because 

its computational time is extremely long. We construct a 

W-band (92GHz to 94 GHz) imaging system, as shown in Fig. 

11. The antenna can be scanned at a 2-D planar aperture with 

200 200  points. 

The imaging targets include ten small metal balls and a 

combination of knife and scissor, representing a point-like 

target and volume target, respectively, as illustrated in Fig. 12. 

The imaging results of Fourier-based method (specifically, the 

K  algorithm) are shown in Figs. 13 and 14, by using the full 

data set, 50%, and 30% of the data, respectively. Clearly, the 

random undersampling results in white noise like artifacts in 

the image domain. These artifacts cannot be removed by the 

Fourier-based methods. However, with CS, it is possible to 

remove the aliasing noisy artifacts without degrading the image 

quality. Figs. 15 and 16 illustrate the imaging results of the 

Holography-CS method. It is evident that the CS-based method 

can obtain better imaging results than the traditional 

Fourier-based method, even when using much reduced data.  

 

 

 

  
(a)                                                      (b) 

Fig. 12.  Imaging targets; (a) ten metal balls, (b) knife and scissor.  

 
(a)                                                                                 (b)                                                                                 (c) 

Fig. 13.  Fourier-based imaging results with respect to different data ratios; (a) full data, (b) 50% of full data, (c) 30% of full data. 

 
(a)                                                                                 (b)                                                                                 (c) 

Fig. 14.  Fourier-based imaging results with respect to different data ratios; (a) full data, (b) 50% of full data, (c) 30% of full data. 

 
(a)                                                                                 (b)                                                                                (c) 

Fig. 15.  Holography-CS imaging results with respect to different data ratios; (a) full data, (b) 50% of full data, (c) 30% of full data. 
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V. CONCLUSIONS 

This paper proposed a 3-D CS method to the near-field 

MMW imaging. Based on a 3-D holographic imaging 

algorithm, we constructed a sensing operator to avoid storing 

and processing of the large-scale sensing matrix. Most 

importantly, there are no interpolations for both the forward 

and backward operators in performing the optimization 

procedure iterations. We discussed the mutual coherence and 

PSF when dealing with sensing operator, and suggested a 

semi-random way of compressing the antenna elements. The 

proposed 3-D imaging technique has less computations, better 

performance and improved imaging quality compared to the 

K based CS imaging algorithm. Simulations and 

experimental results also demonstrated that the proposed 

technique, not only improves over the Fourier-based imaging, 

but also outperforms the K  based CS method with lower 

RMSEs.  
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