Analytical and Experimental Evaluation of a SMARTBEAM
SMARTBEAMS are steel “I” shaped sections with voids in the middle.

- Make two cuts.
- Separate vertically.
- Weld back together

As a result of this process:

\[
\text{depth}_{\text{before}} < \text{depth}_{\text{after}} \\
\text{weight}_{\text{before}} = \text{weight}_{\text{after}} \\
\text{strength}_{\text{before}} < \text{strength}_{\text{after}}
\]

← reason for SMARTBEAM technology
Analytical & Experimental Evaluation of a SMARTBEAM
Project Overview

Analytical Part
Dr. Hampton
Calculate Bending Stresses

Diagnostic Part
Professor Char
Use Electronic Sensors to Measure Behavior

Experimental Part
Dr. Hampton
Test Behavior in Laboratory, Measure Response
Compare to Analytical Prediction

- $\sigma_{\text{max-comp}}$ linear distribution
- $\sigma_{\text{max-ten.}}$ linear distribution
- $\sigma = 0$
- neutral axis (NA)

Dr. Hampton
Create Mathematical Model of a Steel Beam and Predict Behavior

$\sigma_{\text{max-comp}}$ and $\sigma_{\text{max-ten.}}$ represent the maximum compression and tension stresses, respectively. The neutral axis (NA) is where the stress is zero.
• This project is fundamentally about the behavior of steel structures.
• The critical term in this project description is behavior.
• When engineers use the term behavior they look to describe the how the structure responds to externally applied loads.
• Examples of external loading are

<table>
<thead>
<tr>
<th>Truck Loads</th>
<th>Earth Quake Loads</th>
<th>Wind Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Truck Load Image]</td>
<td>![Earth Quake Load Image]</td>
<td>![Wind Load Image]</td>
</tr>
</tbody>
</table>
Structural response is physical and can be observed and measured.

Most notably:

- Does it **deform** with the load on it.
- How does it deform
 - stretch or compress
 - twist or bend
- Does it **return to its original** shape when the load is removed
- Does it safely resist the load or **does it fail**
- If it does fail, **how does this happen**.
Steel structures are typically composed of beams and columns.

Columns carry axial load and are typically in compression.

Beams carry transverse load and are typically in a state of bending.

Look at behavior of beams and columns.
• Now place a truck on the bridge & observe the bending deformation that results.

• Note that the bending deformation is different at different locations along the beam length.

• The bridge girder deflected shape is the result of bending and called the Elastic Curve.
Engineers study structural behavior in one of two ways
 • Mathematically - predict the behavior
 • Experimentally - measure the behavior

Mathematical or Analytical Modeling
 • Define the structure (load, support, material properties, member cross section)
 • Apply loads
 • Predict system behavior using engineering mechanics

Experimental Evaluation
 • Place structure in test frame under controlled conditions
 • Apply sensors to measure load, displacement and stress
 • Apply loads to test specimen
 • Measure response
• Now, the **mathematical model predictions** should be in reasonably good agreement with the experimental data.
• The objective of this project is to compare predicted and measured behavior for a beam in bending.

Experimental Investigation

Mathematical (Analytical) Model

- Downward Force Vectors Represent Load from Hydraulic Cylinders
- Reaction Force Vector Represents Bolt Support

\[
\text{Measured Experimental Behavior} = \text{Predicted Analytical Behavior}
\]